Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Dis ; 183: 106173, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37247681

RESUMEN

Neuronal hyperexcitation in the rostral ventrolateral medulla (RVLM) drives heightened sympathetic nerve activity and contributes to the etiology of stress-induced hypertension (SIH). Maintenance of mitochondrial functions is central to neuronal homeostasis. PDZD8, an endoplasmic reticulum (ER) transmembrane protein, tethers ER to mitochondria. However, the mechanisms of PDZD8-mediated ER-mitochondria associations regulating neuronal mitochondrial functions and thereby mediating blood pressure (BP) in the RVLM of SIH were largely unknown. SIH rats were subjected to intermittent electric foot shocks plus noise for 2 h twice daily for 15 consecutive days. The underlying mechanisms of PDZD8 were investigated through in vitro experiments by using small interfering RNA and through in vivo experiments, such as intra-RVLM microinjection and Western blot analysis. The function of PDZD8 on BP regulation in the RVLM was determined in vivo via the intra-RVLM microinjection of adeno-associated virus (AAV)2-r-Pdzd8. We found that the c-Fos-positive RVLM tyrosine hydroxylase (TH) neurons, renal sympathetic nerve activity (RSNA), plasma norepinephrine (NE) level, BP, and heart rate (HR) were elevated in SIH rats. ER-mitochondria associations in RVLM neurons were significantly reduced in SIH rats. PDZD8 was mainly expressed in RVLM neurons, and mRNA and protein levels were markedly decreased in SIH rats. In N2a cells, PDZD8 knockdown disrupted ER-mitochondria associations and mitochondrial structure, decreased mitochondrial membrane potential (MMP) and respiratory metabolism, enhanced ROS levels, and reduced catalase (CAT) activity. These effects suggested that PDZD8 dysregulation induced mitochondrial malfunction. By contrast, PDZD8 upregulation in the RVLM of SIH rats could rescue neuronal mitochondrial function, thereby suppressing c-Fos expression in TH neurons and decreasing RSNA, plasma NE, BP, and HR. Our results indicated that the dysregulation of PDZD8-mediated ER-mitochondria associations led to the loss of the activity homeostasis of RVLM neurons by disrupting mitochondrial functions, thereby participating in the regulation of SIH pathology.


Asunto(s)
Hipertensión , Ratas , Animales , Presión Sanguínea , Hipertensión/etiología , Hipertensión/metabolismo , Mitocondrias/metabolismo , Antioxidantes/farmacología , Neuronas/metabolismo , Homeostasis , Retículo Endoplásmico/metabolismo , Bulbo Raquídeo/metabolismo
2.
Angew Chem Int Ed Engl ; 62(26): e202303539, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37083315

RESUMEN

Hypertension, as a leading risk factor for cardiovascular diseases, is associated with oxidative stress and impairment of endogenous antioxidant mechanisms, but there is still a tremendous knowledge gap between hypertension treatment and nanomedicines. Herein, we report a specific nanozyme based on ultrathin two-dimensional (2D) niobium carbide (Nb2 C) MXene, termed Nb2 C MXenzyme, to fight against hypertension by achieving highly efficient reactive oxygen species elimination and inflammatory factors inhibition. The biocompatible Nb2 C MXenzyme displays multiple enzyme-mimicking activities, involving superoxide dismutase, catalase, glutathione peroxidase, and peroxidase, inducing cytoprotective effects by resisting oxidative stress, thereby alleviating inflammatory response and reducing blood pressure, which is systematically demonstrated in a stress-induced hypertension rat model. This strategy not only opens new opportunities for nanozymes to treat hypertension but also expands the potential biomedical applications of 2D MXene nanosystems.


Asunto(s)
Antioxidantes , Hipertensión , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno , Hipertensión/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA