RESUMEN
Correlating electromechanical and dielectric properties with nanometre-scale order is the defining challenge for the development of piezoelectric oxides. Current lead (Pb)-based relaxor ferroelectrics can serve as model systems with which to unravel these correlations, but the nature of the local order and its relation to material properties remains controversial. Here we employ recent advances in diffuse scattering instrumentation to investigate crystals that span the phase diagram of PbMg1/3Nb2/3O3-xPbTiO3 (PMN-xPT) and identify four forms of local order. From the compositional dependence, we resolve the coupling of each form to the dielectric and electromechanical properties observed. We show that relaxor behaviour does not correlate simply with ferroic diffuse scattering; instead, it results from a competition between local antiferroelectric correlations, seeded by chemical short-range order, and local ferroic order. The ferroic diffuse scattering is strongest where piezoelectricity is maximal and displays previously unrecognized modulations caused by anion displacements. Our observations provide new guidelines for evaluating displacive models and hence the piezoelectric properties of environmentally friendly next-generation materials.
RESUMEN
Complementary diffuse and inelastic synchrotron x-ray scattering measurements of lead zirconate-titanate single crystals with composition near the morphotropic phase boundary (x=0.475) are reported. In the temperature range 293 K
RESUMEN
Neutron diffraction data obtained on single crystals of PbZr(1-x)Ti(x)O3 with x=0.325 and x=0.460, which lie on the pseudorhombohedral side of the morphotropic phase boundary, suggest a coexistence of rhombohedral (R3m/R3c) and monoclinic (Cm) domains and that monoclinic order is enhanced by Ti substitution. A monoclinic phase with a doubled unit cell (Cc) is ruled out as the ground state.
Asunto(s)
Plomo/química , Titanio/química , Circonio/química , Cristalización , Fenómenos Ópticos , TemperaturaRESUMEN
Despite intensive studies on the complex perovskite Pb(Fe2/3W1/3)O3 (PFWO) relaxor, understanding the exact nature of its multifunctional properties has remained a challenge for decades. In this work we report a comprehensive structural study of the PFWO single crystals using a combination of synchrotron X-ray diffraction and high-resolution electron microscopy. The set of {h + ½, k + ½, l + ½} superlattice reflections was observed for the first time based on single-crystal synchrotron X-ray experiments (100-450 K) and transmission electron microscopy investigations, which indicates some kind of B-cation ordering in PFWO which had been thought to be totally disordered. It was found that (1) the crystal structure of PFWO should be described by a partly ordered cubic perovskite (i.e. Fm - 3m), (2) the weak ferromagnetic properties and excess magnetic moment of PFWO can be understood based on non-random distribution of Fe cations between the 4a and 4b sites, and (3) the Pb displacement disorder is present in this material and the cations are probably displaced along the <100> directions. The X-ray diffraction results of this investigation show that partial cation ordering indeed exists in PFWO, which makes it necessary to revisit the generally accepted interpretations of the results obtained up to date. In agreement with X-ray diffraction study the main results of TEM study include: (1) a long range order that can be described with the Fm - 3m symmetry is reliably detected, (2) the coherence length of that long range order is in the order of 1-2 nm and (3) no remarkable chemical inhomogeneity is found in the tested PFWO crystal, excluding the possibility of a compositional ordering arising from substitutional defects in the perovskite structure.
RESUMEN
The organic-inorganic lead-halide perovskites are composed of organic molecules imbedded in an inorganic framework. The compounds with general formula CH3NH3PbX 3 (MAPbX 3) display large photovoltaic efficiencies for halogens X = Cl, Br, and I in a wide variety of sample geometries and preparation methods. The organic cation and inorganic framework are bound by hydrogen bonds that tether the molecules to the halide anions, and this has been suggested to be important to the optoelectronic properties. We have studied the effects of this bonding using time-of-flight neutron spectroscopy to measure the molecular dynamics in CH3NH3PbCl3 (MAPbCl3). Low-energy/high-resolution neutron backscattering reveals thermally activated molecular dynamics with a characteristic temperature of ~95 K. At this same temperature, higher-energy neutron spectroscopy indicates the presence of an anomalous broadening in energy (reduced lifetime) associated with the molecular vibrations. By contrast, neutron powder diffraction shows that a spatially long-range structural phase transitions occurs at 178 K (cubic â tetragonal) and 173 K (tetragonal â orthorhombic). The large difference between these two temperature scales suggests that the molecular and inorganic lattice dynamics in MAPbCl3 are actually decoupled. With the assumption that underlying physical mechanisms do not change with differing halogens in the organic-inorganic perovskites, we speculate that the energy scale most relevant to the photovoltaic properties of the lead-halogen perovskites is set by the lead-halide bond, not by the hydrogen bond.
RESUMEN
The acoustic phonons in the organic-inorganic lead halide perovskites have been reported to have anomalously short lifetimes over a large part of the Brillouin zone. The resulting shortened mean free paths of the phonons have been implicated as the origin of the low thermal conductivity. We apply neutron spectroscopy to show that the same acoustic phonon energy linewidth broadening (corresponding to shortened lifetimes) occurs in the fully inorganic CsPbBr3 by comparing the results on the organic-inorganic CH3NH3PbCl3. We investigate the critical dynamics near the three zone boundaries of the cubic P m 3 ¯ m Brillouin zone of CsPbBr3 and find energy and momentum broadened dynamics at momentum points where the Cs-site (A-site) motions contribute to the cross section. Neutron diffraction is used to confirm that both the Cs and Br sites have unusually large thermal displacements with an anisotropy that mirrors the low temperature structural distortions. The presence of an organic molecule is not necessary to disrupt the low-energy acoustic phonons at momentum transfers located away from the zone center in the lead halide perovskites and such damping may be driven by the large displacements or possibly disorder on the A site.
RESUMEN
Lead halide hybrid perovskites consist of an inorganic framework hosting a molecular cation located in the interstitial space. These compounds have been extensively studied as they have been identified as promising materials for photovoltaic applications with the interaction between the molecular cation and the inorganic framework implicated as influential for the electronic properties. CH3NH3PbCl3 undergoes two structural transitions from a high temperature cubic unit cell to a tetragonal phase at 177 K and then a subsequent orthorhombic transition at 170 K. We have measured the low-frequency lattice dynamics using neutron spectroscopy and observe an energy broadening in the acoustic phonon linewidth towards the high-symmetry point Q X = ( 2 , 1 2 , 0 ) when approaching the transitions. Concomitant with these zone boundary anomalies is a hardening of the entire acoustic phonon branch measured in the q â 0 limit near the (2, 0, 0) Bragg position with decreasing temperature. Measurements of the elastic scattering at the Brillouin zone edges Q X = ( 2 , 1 2 , 0 ) , Q M = ( 3 2 , 1 2 , 0 ) , and Q R = ( 3 2 , 3 2 , 5 2 ) show Bragg peaks appearing below these structural transitions. Based on selection rules of neutron scattering, we suggest that the higher 177 K transition is displacive with a distortion of the local octahedral environment and the lower transition is a rigid tilt transition of the octahedra. We do not observe any critical broadening in energy or momentum, beyond resolution, of these peaks near the transitions. We compare these results to the critical properties reported near the structural transitions in other perovskites and particularly CsPbCl3 [Y. Fujii, S. Hoshino, Y. Yamada, and G. Shirane, Phys. Rev. B 9, 4549 (1974)]. We suggest that the simultaneous onset of static resolution-limited Bragg peaks at the zone boundaries and the changes in acoustic phonon energies near the zone center is evidence of a coupling between the inorganic framework and the molecular cation. The results also highlight the importance of displacive transitions in organic-inorganic hybrid perovskites.
RESUMEN
Relaxors are complex materials with unusual properties that have been puzzling the scientific community since their discovery. The main characteristic of relaxors, that is, their dielectric relaxation, remains unclear and is still under debate. The difficulty to conduct measurements at frequencies ranging from ≃1 GHz to ≃1 THz and the challenge of developing models to capture their complex dynamical responses are among the reasons for such a situation. Here, we report first-principles-based molecular dynamic simulations of lead-free Ba(Zr0.5Ti0.5)O3, which allows us to obtain its subterahertz dynamics. This approach reproduces the striking characteristics of relaxors including the dielectric relaxation, the constant-loss behaviour, the diffuse maximum in the temperature dependence of susceptibility, the substantial widening of dielectric spectrum on cooling and the resulting Vogel-Fulcher law. The simulations further relate such features to the decomposed dielectric responses, each associated with its own polarization mechanism, therefore, enhancing the current understanding of relaxor behaviour.
RESUMEN
A single crystal of lead-zirconate-titanate, composition Pb(Zr0.80Ti0.20)O3, was studied by polarized-Raman scattering as a function of temperature. Raman spectra reveal that the local structure deviates from the average structure in both ferroelectric and paraelectric phases. We show that the crystal possesses several, inequivalent complex domain boundaries which show no sign of instability even 200 K above the ferroelectric-to-paraelectric phase transition temperature TC. Two types of boundaries are addressed. The first boundary was formed between ferroelectric domains below TC. This boundary remained stable up to the highest measurement temperatures, and stabilized the domains so that they had the same orientation after repeated heating and cooling cycles. These domains transformed normally to the cubic paraelectric phase. Another type of boundary was formed at 673 K and exhibited no signs of instability up to 923 K. The boundary formation was reversible: it formed and vanished between 573 and 673 K during heating and cooling, respectively. A model in which the crystal is divided into thin slices with different Zr/Ti ratios is proposed. The physical mechanism behind the thermal-stress-induced structural changes is related to the different thermal expansion of the slices, which forces the domain to grow similarly after each heating and cooling cycle. The results are interesting for non-volatile memory development, as it implies that the original ferroelectric state can be restored after the material has been transformed to the paraelectric phase. It also suggests that a low-symmetry structure, stable up to high temperatures, can be prepared through controlled deposition of layers with desired compositions.
RESUMEN
Neutron diffraction studies performed on the solid solution of (BiFeO(3))(1-x)(PbTiO(3))(x) reveal a mixture of two nanoscale phases with different crystal structures: a rhombohedral BiFeO(3)-based phase and a tetragonal PbTiO3-based phase. The ratio of Fe(3)+ and Ti(4)+ ions in the two phases is practically constant; only the proportion of the phases changes. The magnetic moments in the BiFeO(3)-based phase, in contrast to BiFeO(3), deviate from the basal plane. The temperature evolutions of the spin components along the hexagonal axis and within the perpendicular plane are different, leading to a spin re-orientation transition. The antiferromagnetic order in the PbTiO(3)-based phase corresponds to a simple structure with the propagation vector (1/2, 1/2, 1/2). The temperature dependence of the antiferromagnetic moment in the tetragonal phase at x = 0.5 indicates a canted antiferromagnetic order and a net ferromagnetic moment. A strong magnetic coupling between the two constituting phases due to the nanoscale character of the phases and well-developed interface between nanoparticles has been observed. The system of (BiFeO(3))(1-x)(PbTiO(3))(x) demonstrates an interesting scenario, where the proximity effects in the unstable system play a crucial role in the appearance of the unusual magnetic properties.
RESUMEN
In the present study, we investigated the effect of interleukin-2 (IL-2) on the intracellular calcium in enzymatically isolated ventricular myocytes with the use of the spectrofluorometric techniques. It was shown that IL-2 (2.5 200 U/ml) depressed electrically induced Ca(2+) (i) transients of ventricular myocytes in a dose dependent manner. IL-2 (200 U/ml) did not alter the caffeine releasable pool of Ca(2+). Pretreatment with the non selective opioid antagonist naloxone (10(-8)mol/L) or a specific kappa opioid antagonist nor binaltorphimine (nor-BNI, 10(-8) mol/L) abolished the inhibitory effect of IL-2 (200 U/ml) on the Ca(2+) (i) transients of cardiomyocytes, whereas the specific delta opioid antagonist naltrindole (10(-6) mol/L) did not abolish the inhibitory effect. The effect of IL-2 (200 U/ml) was also abolished after pretreatment with pertussis toxin (PTX, 5 mg/L) as well as phospholipase C (PLC) inhibitor U73122 (5 10(-6) mol/L), but not by tyrosine kinase inhibitor genistein (10(-4) mol/L). It is concluded that the depressant effect of IL-2 on the Ca(2+) (i) transients of isolated ventricular myocytes is mainly mediated by cardiac kappa opioid receptor pathway including a PTX sensitive Gi-protein and PLC, but not by tyrosine kinase.
Asunto(s)
Calcio/metabolismo , Interleucina-2/farmacología , Miocitos Cardíacos/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Proteínas de Unión al GTP/metabolismo , Ventrículos Cardíacos/metabolismo , Técnicas In Vitro , Miocitos Cardíacos/efectos de los fármacos , Ratas , Receptores Opioides kappa/fisiologíaRESUMEN
AIM: To investigate the poteintation of vincristine-induecd apoptosis by tetrandrine, neferine and dauricine isolated from Chinese medicinal plants in the human mammary MCF-7 multidrug resistant cells. METHODS: The apoptotic cells were detected by fluorescent staining of a combination of Hoechst 33342 and propidium iodide (PI), flow cytometry and agarose electrophoresis. RESULTS: The apoptotic cells induced by vincristine alone accounted for about 10% of all the cancer cells, while the percentage of apoptotic cells induced by a combination of vincristine with tetrandrine, neferine, or dauricine was found to be significantly higher than that by vincristine alone, and their reversal effects were positively correlated with the drug concentration and the exposure time. In addition, tetrandrine was shown to be the most potent in the reversal efficacy among the three compounds to be tested for apoptosis in vitro. CONCLUSION: Tetrandrine, neferine and dauricine showed obvious potenitiation of vincristine-induced apoptosis in the human mammary MCF-7 multidrug-resistant cells.
Asunto(s)
Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Bencilisoquinolinas , Neoplasias de la Mama/patología , Isoquinolinas/farmacología , Tetrahidroisoquinolinas , Vincristina/farmacología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Femenino , Humanos , Células Tumorales CultivadasRESUMEN
Fano resonance is a phenomenon in which a discrete state interferes with a continuum of states and has been observed in many areas of science. Here, we report on the prediction of a Fano resonance in ferroelectric relaxors, whose properties are poorly understood: an ab initio molecular dynamic scheme reveals such resonance between the bare optical phonon mode of the Zr sublattice (the discrete state) and the bare optical phonon mode of the Ti sublattice (the continuum of states) in disordered lead-free Ba(Zr,Ti)O3. The microscopic origins of the discrete state and continuum of states are discussed in the context of relaxor properties. Furthermore, our simulations suggest that the T* characteristic temperature of relaxor is related to a hardening of the vibrational frequencies associated with fluctuation of the Ti sublattice. Finally, a terahertz relaxation mode reflecting reorientations of Ti dipoles and showing a thermally activated behaviour is predicted, in agreement with previous experiments.
RESUMEN
PbZr(1-x)Ti(x)O3 (PZT) is one of the most important and widely used piezoelectric materials. The study of its local and average structures is of fundamental importance in understanding the origin of its high-performance piezoelectricity. Pair distribution function analysis and Rietveld refinement have been carried out to study both the short- and long-range order in the Zr-rich rhombohedral region of the PZT phase diagram. The nature of the monoclinic phase across the Zr-rich and morphotropic phase boundary area of PZT is clarified. Evidence is found that long-range average rhombohedral and both long- and short-range monoclinic regions coexist at all compositions. In addition, a boundary between a monoclinic (M(A)) structure and another monoclinic (M(B)) structure has been found. The general advantage of a particular monoclinic distortion (M(A)) for high piezoactivity is discussed from a spatial structural model of susceptibility to stress and electric field, which is applicable across the wide field of perovskite materials science.
Asunto(s)
Antimaláricos/farmacología , Artemisininas , Cloroquina/farmacología , Plasmodium falciparum/efectos de los fármacos , Sesquiterpenos/farmacología , Animales , Eritrocitos/parasitología , Microscopía Electrónica , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/ultraestructuraRESUMEN
Relaxor ferroelectrics, with their strong dependence of polarization on the applied electric field, are of considerable technological importance. On a microscopic scale, however, there exists competition as well as coexistence between short-range and long-range polar order. The conventional picture is that the polar nano-regions (PNRs) that appear at high temperatures beyond the Curie transition, form nuclei for the field-induced long-range order at low temperatures. Here, we report high-energy X-ray diffuse-scattering measurements on the relaxor Pb(Zn(1/3)Nb(2/3))O(3) (PZN) to study the short-range polar order under an electric field applied along the [111] direction. In contrast to conventional expectations, the overall diffuse-scattering intensity is not suppressed. On the other hand, the field induces a marked change on the shape of the three-dimensional diffuse-scattering intensity pattern, corresponding to a redistribution of PNRs in real space. We show that these surprising results are consistent with a model in which the PNRs with [110]-type polarizations, orthogonal to that of the surrounding environment, are embedded and persist in the [111]-polarized ferroelectric order of the bulk.
RESUMEN
Racemic verapamil and close structural derivatives gallopamil and devapamil completely reverse chloroquine-resistance in falciparum malaria at 1-2 micromolar concentrations. If the R-(+) isomers of these calcium channel inhibitors are used, chloroquine-resistance is again completely reversed at similar doses. However, these R-(+) isomers do not bind to cardiovascular calcium channels which are stereospecific for the S-(-) isomer of the drugs. Further since calcium channel inhibition is not involved, toxicity associated with this activity can be avoided. Therefore it is possible that a series of R-(+) isomers could be found that alter the resistant state without possessing significant toxicity. It is postulated that these lipophilic drugs are interacting with the mechanism of resistance, possibly a multidrug resistance glycoprotein pump.
Asunto(s)
Cloroquina , Resistencia a Medicamentos/efectos de los fármacos , Canales Iónicos/efectos de los fármacos , Malaria/parasitología , Plasmodium falciparum/efectos de los fármacos , Animales , Calcio/metabolismo , Interacciones Farmacológicas , Galopamilo/toxicidad , Malaria/tratamiento farmacológico , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Verapamilo/análogos & derivados , Verapamilo/toxicidadRESUMEN
Antimalarial activity of tetrandrine was studied using a continuous in vitro culture of Plasmodium falciparum. Experimental results showed that tetrandrine has potent antimalarial effect on both chloroquine sensitive and resistant strains of Plasmodium falciparum. Interestingly, tetrandrine is about three times more potent against the chloroquine resistant strain than it is against the sensitive strain based on their IC50 values, which were 5.09 x 10(-7) M for the sensitive strain and 1.51 x 10(-7) M for the resistant strain. In addition, reversal experiments revealed that tetrandrine cannot reverse chloroquine-resistance, although it has verapamil-like, calcium-channel-blocker activity.
Asunto(s)
Alcaloides/farmacología , Bencilisoquinolinas , Cloroquina/farmacología , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos , Bloqueadores de los Canales de Calcio , Relación Dosis-Respuesta a Droga , Resistencia a MedicamentosRESUMEN
Using chloroquine-sensitive (CS) and chloroquine-resistant (CR) strains of Plasmodium falciparum in vitro, interactions between tetrandrine (TT) and either chloroquine (CQ) or qinghaosu (QHS, artemisinin) were assessed using isobolograms. Sums of the fractional inhibitory concentration for the combination of the two drugs are less than one and therefore, we can conclude that in vitro TT and CQ or QHS act synergistically against CS and CR falciparum malaria. Remarkably, using CR malaria, TT can lower the IC50 dose of CQ as much as 40 fold. These drug combinations may impair the advantage that the development of CQ resistance conveys on the parasite.