Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(3): 3316-3328, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297556

RESUMEN

Structured illumination microscopy (SIM) is a powerful technique for super-resolution (SR) image reconstruction. However, conventional SIM methods require high-contrast illumination patterns, which necessitate precision optics and highly stable light sources. To overcome these challenges, we propose a new method called contrast-robust structured illumination microscopy (CR-SIM). CR-SIM employs a deep residual neural network to enhance the quality of SIM imaging, particularly in scenarios involving low-contrast illumination stripes. The key contribution of this study is the achievement of reliable SR image reconstruction even in suboptimal illumination contrast conditions. The results of our study will benefit various scientific disciplines.

2.
Opt Lett ; 49(9): 2205-2208, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691680

RESUMEN

Structured-illumination microscopy (SIM) offers a twofold resolution enhancement beyond the optical diffraction limit. At present, SIM requires several raw structured-illumination (SI) frames to reconstruct a super-resolution (SR) image, especially the time-consuming reconstruction of speckle SIM, which requires hundreds of SI frames. Considering this, we herein propose an untrained structured-illumination reconstruction neural network (USRNN) with known illumination patterns to reduce the amount of raw data that is required for speckle SIM reconstruction by 20 times and thus improve its temporal resolution. Benefiting from the unsupervised optimizing strategy and CNNs' structure priors, the high-frequency information is obtained from the network without the requirement of datasets; as a result, a high-fidelity SR image with approximately twofold resolution enhancement can be reconstructed using five frames or less. Experiments on reconstructing non-biological and biological samples demonstrate the high-speed and high-universality capabilities of our method.

3.
Front Immunol ; 15: 1254516, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455060

RESUMEN

There exists a bidirectional relationship between oral health and general well-being, with an imbalance in oral symbiotic flora posing a threat to overall human health. Disruptions in the commensal flora can lead to oral diseases, while systemic illnesses can also impact the oral cavity, resulting in the development of oral diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum, known as pathogenic bacteria associated with periodontitis, play a crucial role in linking periodontitis to accompanying systemic diseases. In periodontal tissues, these bacteria, along with their virulence factors, can excessively activate the host immune system through local diffusion, lymphatic circulation, and blood transmission. This immune response disruption contributes to an imbalance in osteoimmune mechanisms, alveolar bone resorption, and potential systemic inflammation. To restore local homeostasis, a deeper understanding of microbiota-host interactions and the immune network phenotype in local tissues is imperative. Defining the immune network phenotype in periodontal tissues offers a promising avenue for investigating the complex characteristics of oral plaque biofilms and exploring the potential relationship between periodontitis and associated systemic diseases. This review aims to provide an overview of the mechanisms underlying Porphyromonas gingivalis- and Fusobacterium nucleatum-induced alveolar bone resorption, as well as the immunophenotypes observed in host periodontal tissues during pathological conditions.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Humanos , Porphyromonas gingivalis , Inflamación , Fusobacterium nucleatum/fisiología
4.
Front Bioeng Biotechnol ; 12: 1338539, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361792

RESUMEN

Increasing bacterial infections and growing resistance to available drugs pose a serious threat to human health and the environment. Although antibiotics are crucial in fighting bacterial infections, their excessive use not only weakens our immune system but also contributes to bacterial resistance. These negative effects have caused doctors to be troubled by the clinical application of antibiotics. Facing this challenge, it is urgent to explore a new antibacterial strategy. MXene has been extensively reported in tumor therapy and biosensors due to its wonderful performance. Due to its large specific surface area, remarkable chemical stability, hydrophilicity, wide interlayer spacing, and excellent adsorption and reduction ability, it has shown wonderful potential for biopharmaceutical applications. However, there are few antimicrobial evaluations on MXene. The current antimicrobial mechanisms of MXene mainly include physical damage, induced oxidative stress, and photothermal and photodynamic therapy. In this paper, we reviewed MXene-based antimicrobial composites and discussed the application of MXene in bacterial infections to guide further research in the antimicrobial field.

5.
Toxics ; 12(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38922076

RESUMEN

Smoking is a pathogenic factor for pulmonary hypertension (PH). Our previous study showed that serum miR-21 levels are elevated in smokers. miR-21 is considered as engaged in the PH process; however, its mechanisms remain unclear. In this investigation, we found that in the lung tissue of smoking-induced PH patients, the levels of miR-21 and aging markers (p21 and p16) were upregulated, and the function of pulmonary vascular endothelial cells was also impaired. Exposure of mice to cigarette smoke (CS) for four months caused similar changes in lung tissues and increased pulmonary arterial pressure, which were attenuated by knockout of miR-21. Further, human umbilical vein endothelial cells (HUVECs) exposed to cigarette smoke extract (CSE) revealed upregulation of miR-21 levels, depression of PTEN, activation of PI3K/AKT/mTOR signaling, an increase in senescence indexes, and enhanced dysfunction. Inhibiting miR-21 overexpression reversed the PTEN-mTOR signaling pathway and prevented senescence and dysfunction of HUVECs. In sum, our data indicate that miR-21-mediated endothelial senescence and dysfunction are involved in CS-induced PH through the activation of PI3K/AKT/mTOR signaling, which suggests that selective miR-21 inhibition offers the potential to attenuate PH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA