Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 123(16): 165001, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31702328

RESUMEN

Neutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models. This analysis represents the first test of stopping models under inertial confinement fusion conditions, covering plasma temperatures of k_{B}T≈1-4 keV and particle densities of n≈(12-2)×10^{24} cm^{-3}. Under these conditions, we find significant deviations of our data from a theory employing classical collisions whereas the theory including quantum diffraction agrees with our data.

3.
Phys Rev Lett ; 117(22): 225002, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27925754

RESUMEN

Analyses of high foot implosions show that performance is limited by the radiation drive environment, i.e., the hohlraum. Reported here are significant improvements in the radiation environment, which result in an enhancement in implosion performance. Using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density improves the symmetry control of a high foot implosion. Moreover, for the first time, these hohlraums produce reduced levels of hot electrons, generated by laser-plasma interactions, which are at levels comparable to near-vacuum hohlraums, and well within specifications. Further, there is a noteworthy increase in laser energy coupling to the hohlraum, and discrepancies with simulated radiation production are markedly reduced. At fixed laser energy, high foot implosions driven with this improved hohlraum have achieved a 1.4×increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50% as compared to a reference experiment with the same laser energy.

4.
Phys Rev Lett ; 115(10): 105001, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26382681

RESUMEN

Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR>1 g/cm(2). This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

5.
Phys Rev Lett ; 112(2): 025002, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24484021

RESUMEN

We present the first results from an experimental campaign to measure the atomic ablator-gas mix in the deceleration phase of gas-filled capsule implosions on the National Ignition Facility. Plastic capsules containing CD layers were filled with tritium gas; as the reactants are initially separated, DT fusion yield provides a direct measure of the atomic mix of ablator into the hot spot gas. Capsules were imploded with x rays generated in hohlraums with peak radiation temperatures of ∼294 eV. While the TT fusion reaction probes conditions in the central part (core) of the implosion hot spot, the DT reaction probes a mixed region on the outer part of the hot spot near the ablator-hot-spot interface. Experimental data were used to develop and validate the atomic-mix model used in two-dimensional simulations.

6.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39171981

RESUMEN

Bayesian inference applied to x-ray spectroscopy data analysis enables uncertainty quantification necessary to rigorously test theoretical models. However, when comparing to data, detailed atomic physics and radiation transfer calculations of x-ray emission from non-uniform plasma conditions are typically too slow to be performed in line with statistical sampling methods, such as Markov Chain Monte Carlo sampling. Furthermore, differences in transition energies and x-ray opacities often make direct comparisons between simulated and measured spectra unreliable. We present a spectral decomposition method that allows for corrections to line positions and bound-bound opacities to best fit experimental data, with the goal of providing quantitative feedback to improve the underlying theoretical models and guide future experiments. In this work, we use a neural network (NN) surrogate model to replace spectral calculations of isobaric hot-spots created in Kr-doped implosions at the National Ignition Facility. The NN was trained on calculations of x-ray spectra using an isobaric hot-spot model post-processed with Cretin, a multi-species atomic kinetics and radiation code. The speedup provided by the NN model to generate x-ray emission spectra enables statistical analysis of parameterized models with sufficient detail to accurately represent the physical system and extract the plasma parameters of interest.

7.
Phys Rev Lett ; 111(5): 052501, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23952390

RESUMEN

Neutron time-of-flight spectra from inertial confinement fusion experiments with tritium-filled targets have been measured at the National Ignition Facility. These spectra represent a significant improvement in energy resolution and statistics over previous measurements, and afford the first definitive observation of a peak resulting from sequential decay through the ground state of (5)He at low reaction energies E(c.m.) 100

8.
Appl Radiat Isot ; 143: 163-175, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30447627

RESUMEN

Nuclear fusion experiments performed at the National Ignition Facility produce radioactive debris, arising in reactions of fast neutrons with the target assembly. We have found that postshot debris collections are fractionated, such that isotope ratios in an individual debris sample may not be representative of the radionuclide inventory produced by the experiment. We discuss the potential sources of this fractionation and apply isotope-correlation techniques to calculate unfractionated isotope ratios that are used in measurements of nuclear reaction cross sections.

9.
Rev Sci Instrum ; 89(10): 10I133, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399665

RESUMEN

A large area solid radiochemistry collector was deployed at the National Ignition Facility (NIF) with a collection efficiency for post-shot, solid target debris of approximately 1% of the total 4π solid angle. The collector consisted of a 20-cm diameter vanadium foil surrounded by an aluminum side-enclosure and was fielded 50 cm from the NIF target. The collector was used on two NIF neutron yield shots, both of which had a monolayer of 238U embedded in the capsule ablator 10 µm from the inner surface. Fission and activation products produced in the 238U were collected, and subsequent analyses via gamma spectroscopy indicated that the distribution of fission products was not uniform, with peak and valley fission products preferentially collected on the vanadium and low- and high-mass fission products primarily located on the aluminum side-enclosure. The results from these shots will be used to design future nuclear data experiments at NIF.

10.
Rev Sci Instrum ; 87(11): 11D702, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910563

RESUMEN

At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

11.
Rev Sci Instrum ; 87(11): 11D838, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910394

RESUMEN

Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85mKr/88Kr ratio, which may be the result of incorrect nuclear data.

12.
Rev Sci Instrum ; 87(11): 11D813, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910632

RESUMEN

The solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. The collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation.

13.
Rev Sci Instrum ; 87(11): 11D825, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910358

RESUMEN

The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of natXe and discuss future work to study the strength of interactions between plasma and nuclei.

14.
Rev Sci Instrum ; 87(11): 11D816, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910455

RESUMEN

The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ∼200 keV FWHM.

15.
Phys Rev E ; 94(2-1): 021202, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27627237

RESUMEN

An accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T_{ion} are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T_{ion} are observed and the difference is seen to increase with increasing apparent DT T_{ion}. The line-of-sight rms variations of both DD and DT T_{ion} are small, ∼150eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T_{ion}. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT T_{ion} greater than the DD T_{ion}, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.

16.
Rev Sci Instrum ; 85(6): 063508, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24985820

RESUMEN

We describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,γ) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of (198m+g)Au and (196g)Au is a performance signature of ablator areal density and the fuel assembly confinement time. We identify the measurement of nuclear cross sections of astrophysical importance as a potential application of the neutrons generated at the NIF.

17.
Rev Sci Instrum ; 85(10): 103504, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25362390

RESUMEN

A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ∼1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.

18.
Rev Sci Instrum ; 83(10): 10D315, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126841

RESUMEN

The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

19.
Rev Sci Instrum ; 83(10): 10D917, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126919

RESUMEN

The Radiochemical Analysis of Gaseous Samples (RAGS) diagnostic apparatus was recently installed at the National Ignition Facility (NIF). Following a NIF shot, RAGS is used to pump the gas load from the NIF chamber for purification and isolation of the noble gases. After collection, the activated gaseous species are counted via gamma spectroscopy for measurement of the capsule areal density and fuel-ablator mix. Collection efficiency was determined by injecting a known amount of (135)Xe into the NIF chamber, which was then collected with RAGS. Commissioning was performed with an exploding pusher capsule filled with isotopically enriched (124)Xe and (126)Xe added to the DT gas fill. Activated xenon species were recovered post-shot and counted via gamma spectroscopy. Results from the collection and commissioning tests are presented. The performance of RAGS allows us to establish a noble gas collection method for measurement of noble gas species produced via neutron and charged particle reactions in a NIF capsule.

20.
Rev Sci Instrum ; 83(10): 10D313, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126840

RESUMEN

Neutron yields are measured at the National Ignition Facility (NIF) by an extensive suite of neutron activation diagnostics. Neutrons interact with materials whose reaction cross sections threshold just below the fusion neutron production energy, providing an accurate measure of primary unscattered neutrons without contribution from lower-energy scattered neutrons. Indium samples are mounted on diagnostic instrument manipulators in the NIF target chamber, 25-50 cm from the source, to measure 2.45 MeV deuterium-deuterium fusion neutrons through the (115)In(n,n')(115 m) In reaction. Outside the chamber, zirconium and copper are used to measure 14 MeV deuterium-tritium fusion neutrons via (90)Zr(n,2n), (63)Cu(n,2n), and (65)Cu(n,2n) reactions. An array of 16 zirconium samples are located on port covers around the chamber to measure relative yield anisotropies, providing a global map of fuel areal density variation. Neutron yields are routinely measured with activation to an accuracy of 7% and are in excellent agreement both with each other and with neutron time-of-flight and magnetic recoil spectrometer measurements. Relative areal density anisotropies can be measured to a precision of less than 3%. These measurements reveal apparent bulk fuel velocities as high as 200 km/s in addition to large areal density variations between the pole and equator of the compressed fuel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA