Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 44(7): 1580-1583, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30933095

RESUMEN

Strong enhancement of optoacoustic interactions in the micrometer-sized core of a photonic crystal fiber (PCF) enables stable, harmonic mode locking of a soliton fiber laser at GHz frequencies. Here we report that by tapering the PCF during the draw, the optoacoustic gain bandwidth can be broadened to ∼47 MHz, more than 3 times wider than in the untapered fiber. This made possible broad pulse-repetition-rate tuning over 66 MHz (from 2.042 to 2.108 GHz) of an optoacoustically mode-locked soliton fiber laser. Within this tuning range, the harmonically mode-locked pulse trains at the laser output were observed to be quite robust, with better than 40 dB supermode suppression ratio, sub-ps pulse timing jitter, and <0.2%relative intensity noise. This gigahertz-rate, near-infrared soliton fiber laser has remarkable pulse-rate tunability and low noise level, and has important potential applications in frequency metrology, high-speed optical sampling, and fiber telecommunications.

2.
Light Sci Appl ; 10(1): 120, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099618

RESUMEN

Mode-locked lasers have been widely used to explore interactions between optical solitons, including bound-soliton states that may be regarded as "photonic molecules". Conventional mode-locked lasers normally, however, host at most only a few solitons, which means that stochastic behaviours involving large numbers of solitons cannot easily be studied under controlled experimental conditions. Here we report the use of an optoacoustically mode-locked fibre laser to create hundreds of temporal traps or "reactors" in parallel, within each of which multiple solitons can be isolated and controlled both globally and individually using all-optical methods. We achieve on-demand synthesis and dissociation of soliton molecules within these reactors, in this way unfolding a novel panorama of diverse dynamics in which the statistics of multi-soliton interactions can be studied. The results are of crucial importance in understanding dynamical soliton interactions and may motivate potential applications for all-optical control of ultrafast light fields in optical resonators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA