Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 146(4): 544-54, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21835447

RESUMEN

The glucocorticoid receptor (GR), like other eukaryotic transcription factors, regulates gene expression by interacting with chromatinized DNA response elements. Photobleaching experiments in living cells indicate that receptors transiently interact with DNA on the time scale of seconds and predict that the response elements may be sparsely occupied on average. Here, we show that the binding of one receptor at the glucocorticoid response element (GRE) does not reduce the steady-state binding of another receptor variant to the same GRE. Mathematical simulations reproduce this noncompetitive state using short GR/GRE residency times and relatively long times between DNA binding events. At many genomic sites where GR binding causes increased chromatin accessibility, concurrent steady-state binding levels for the variant receptor are actually increased, a phenomenon termed assisted loading. Temporally sparse transcription factor-DNA interactions induce local chromatin reorganization, resulting in transient access for binding of secondary regulatory factors.


Asunto(s)
Ensamble y Desensamble de Cromatina , Receptores de Glucocorticoides/metabolismo , Elementos de Respuesta , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Tumoral , Virus del Tumor Mamario del Ratón , Ratones , Modelos Biológicos , Método de Montecarlo , Nucleosomas/metabolismo , Receptores de Estrógenos/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
2.
Hum Mol Genet ; 29(2): 286-294, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31816064

RESUMEN

Glycogen storage disease type Ia (GSD Ia) is caused by autosomal mutations in glucose-6-phosphatase α catalytic subunit (G6PC) and can present with severe hypoglycemia, lactic acidosis and hypertriglyceridemia. In both children and adults with GSD Ia, there is over-accumulation of hepatic glycogen and triglycerides that can lead to steatohepatitis and a risk for hepatocellular adenoma or carcinoma. Here, we examined the effects of the commonly used peroxisomal proliferated activated receptor α agonist, fenofibrate, on liver and kidney autophagy and lipid metabolism in 5-day-old G6pc -/- mice serving as a model of neonatal GSD Ia. Five-day administration of fenofibrate decreased the elevated hepatic and renal triglyceride and hepatic glycogen levels found in control G6pc -/- mice. Fenofibrate also induced autophagy and promoted ß-oxidation of fatty acids and stimulated gene expression of acyl-CoA dehydrogenases in the liver. These findings show that fenofibrate can rapidly decrease hepatic glycogen and triglyceride levels and renal triglyceride levels in neonatal G6pc -/- mice. Moreover, since fenofibrate is an FDA-approved drug that has an excellent safety profile, our findings suggest that fenofibrate could be a potential pharmacological therapy for GSD Ia in neonatal and pediatric patients as well as for adults. These findings may also apply to non-alcoholic fatty liver disease, which shares similar pathological and metabolic changes with GSD Ia.


Asunto(s)
Fenofibrato/farmacología , Glucosa-6-Fosfatasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Glucógeno/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Acil-CoA Deshidrogenasas/metabolismo , Animales , Animales Recién Nacidos , Autofagosomas/efectos de los fármacos , Autofagosomas/patología , Autofagosomas/ultraestructura , Autofagia/efectos de los fármacos , Ácidos Grasos/metabolismo , Fenofibrato/administración & dosificación , Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/enzimología , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Hígado/enzimología , Hígado/patología , Hígado/ultraestructura , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , PPAR alfa/genética , PPAR alfa/metabolismo , Triglicéridos/metabolismo
3.
Hum Mol Genet ; 28(7): 1100-1116, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496485

RESUMEN

Coiled-coil-helix-coiled-coil-helix domain containing protein 2 (CHCHD2) mutations were linked with autosomal dominant Parkinson's disease (PD) and recently, Alzheimer's disease/frontotemporal dementia. In the current study, we generated isogenic human embryonic stem cell (hESC) lines harboring PD-associated CHCHD2 mutation R145Q or Q126X via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) method, aiming to unravel pathophysiologic mechanism and seek potential intervention strategy against CHCHD2 mutant-caused defects. By engaging super-resolution microscopy, we identified a physical proximity and similar distribution pattern of CHCHD2 along mitochondria with mitochondrial contact site and cristae organizing system (MICOS), a large protein complex maintaining mitochondria cristae. Isogenic hESCs and differentiated neural progenitor cells (NPCs) harboring CHCHD2 R145Q or Q126X mutation showed impaired mitochondria function, reduced CHCHD2 and MICOS components and exhibited nearly hollow mitochondria with reduced cristae. Furthermore, PD-linked CHCHD2 mutations lost their interaction with coiled-coil-helix-coiled-coil-helix domain containing protein 10 (CHCHD10), while transient knockdown of either CHCHD2 or CHCHD10 reduced MICOS and mitochondria cristae. Importantly, a specific mitochondria-targeted peptide, Elamipretide/MTP-131, now tested in phase 3 clinical trials for mitochondrial diseases, was found to enhance CHCHD2 with MICOS and mitochondria oxidative phosphorylation enzymes in isogenic NPCs harboring heterozygous R145Q, suggesting that Elamipretide is able to attenuate CHCHD2 R145Q-induced mitochondria dysfunction. Taken together, our results suggested CHCHD2-CHCHD10 complex may be a novel therapeutic target for PD and related neurodegenerative disorders, and Elamipretide may benefit CHCHD2 mutation-linked PD.


Asunto(s)
Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Factores de Transcripción/genética , Animales , Línea Celular , Proteínas de Unión al ADN , Demencia Frontotemporal/metabolismo , Estudios de Asociación Genética/métodos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación/genética , Enfermedades Neurodegenerativas/metabolismo , Oligopéptidos/farmacología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Factores de Transcripción/fisiología
4.
Hum Mol Genet ; 28(1): 143-154, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30256948

RESUMEN

Glucose-6-phosphatase α (G6Pase) deficiency, also known as von Gierke's Disease or Glycogen storage disease type Ia (GSD Ia), is characterized by decreased ability of the liver to convert glucose-6-phosphate to glucose leading to glycogen accumulation and hepatosteatosis. Long-term complications of GSD Ia include hepatic adenomas and carcinomas, in association with the suppression of autophagy in the liver. The G6pc-/- mouse and canine models for GSD Ia were treated with the pan-peroxisomal proliferator-activated receptor agonist, bezafibrate, to determine the drug's effect on liver metabolism and function. Hepatic glycogen and triglyceride concentrations were measured and western blotting was performed to investigate pathways affected by the treatment. Bezafibrate decreased liver triglyceride and glycogen concentrations and partially reversed the autophagy defect previously demonstrated in GSD Ia models. Changes in medium-chain acyl-CoA dehydrogenase expression and acylcarnintine flux suggested that fatty acid oxidation was increased and fatty acid synthase expression associated with lipogenesis was decreased in G6pc-/- mice treated with bezafibrate. In summary, bezafibrate induced autophagy in the liver while increasing fatty acid oxidation and decreasing lipogenesis in G6pc-/- mice. It represents a potential therapy for glycogen overload and hepatosteatosis associated with GSD Ia, with beneficial effects that have implications for non-alcoholic fatty liver disease.


Asunto(s)
Bezafibrato/farmacología , Enfermedad del Almacenamiento de Glucógeno Tipo I/tratamiento farmacológico , Animales , Autofagia/efectos de los fármacos , Bezafibrato/metabolismo , Modelos Animales de Enfermedad , Perros , Glucosa/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Noqueados , Triglicéridos/metabolismo
5.
Hum Mol Genet ; 28(12): 1971-1981, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30715350

RESUMEN

Titin-truncating variants (TTNtv) are the most common genetic cause of dilated cardiomyopathy. TTNtv occur in ~1% of the general population and causes subclinical cardiac remodeling in asymptomatic carriers. In rat models with either proximal or distal TTNtv, we previously showed altered cardiac metabolism at baseline and impaired cardiac function in response to stress. However, the molecular mechanism(s) underlying these effects remains unknown. In the current study, we used rat models of TTNtv to investigate the effect of TTNtv on autophagy and mitochondrial function, which are essential for maintaining cellular metabolic homeostasis and cardiac function. In both the proximal and distal TTNtv rat models, we found increased levels of LC3B-II and p62 proteins, indicative of diminished autophagic degradation. The accumulation of autophagosomes and p62 protein in cardiomyocytes was also demonstrated by electron microscopy and immunochemistry, respectively. Impaired autophagy in the TTNtv heart was associated with increased phosphorylation of mTOR and decreased protein levels of the lysosomal protease, cathepsin B. In addition, TTNtv hearts showed mitochondrial dysfunction, as evidenced by decreased oxygen consumption rate in cardiomyocytes, increased levels of reactive oxygen species and mitochondrial protein ubiquitination. We also observed increased acetylation of mitochondrial proteins associated with decreased NAD+/NADH ratio in the TTNtv hearts. mTORC1 inhibitor, rapamycin, was able to rescue the impaired autophagy in TTNtv hearts. In summary, TTNtv leads to impaired autophagy and mitochondrial function in the heart. These changes not only provide molecular mechanisms that underlie TTNtv-associated ventricular remodeling but also offer potential targets for its intervention.


Asunto(s)
Autofagia/genética , Cardiomiopatía Dilatada/genética , Conectina/genética , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Acetilación , Animales , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Cardiomiopatía Dilatada/metabolismo , Catepsina B/metabolismo , Células Cultivadas , Conectina/metabolismo , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias Cardíacas/patología , Proteínas Mitocondriales/metabolismo , NAD/análogos & derivados , NAD/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Eliminación de Secuencia , Proteína Sequestosoma-1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitinación
6.
Gastroenterology ; 157(3): 777-792.e14, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31078624

RESUMEN

BACKGROUND & AIMS: We studied the role of interleukin 11 (IL11) signaling in the pathogenesis of nonalcoholic steatohepatitis (NASH) using hepatic stellate cells (HSCs), hepatocytes, and mouse models of NASH. METHODS: We stimulated mouse and human fibroblasts, HSCs, or hepatocytes with IL11 and other cytokines and analyzed them by imaging, immunoblot, and functional assays and enzyme-linked immunosorbent assays. Mice were given injections of IL11. Mice with disruption of the interleukin 11 receptor subunit alpha1 gene (Il11ra1-/-) mice and Il11ra1+/+ mice were fed a high-fat methionine- and choline-deficient diet (HFMCD) or a Western diet with liquid fructose (WDF) to induce steatohepatitis; control mice were fed normal chow. db/db mice were fed with methionine- and choline-deficient diet for 12 weeks and C57BL/6 NTac were fed with HFMCD for 10 weeks or WDF for 16 weeks. Some mice were given intraperitoneal injections of anti-IL11 (X203), anti-IL11RA (X209), or a control antibody at different timepoints on the diets. Livers and blood were collected; blood samples were analyzed by biochemistry and liver tissues were analyzed by histology, RNA sequencing, immunoblots, immunohistochemistry, hydroxyproline, and mass cytometry time of flight assays. RESULTS: HSCs incubated with cytokines produced IL11, resulting in activation (phosphorylation) of ERK and expression of markers of fibrosis. Livers of mice given injections of IL11 became damaged, with increased markers of fibrosis, hepatocyte cell death and inflammation. Following the HFMCD or WDF, livers from Il11ra1-/- mice had reduced steatosis, fibrosis, expression of markers of inflammation and steatohepatitis, compared to and Il11ra1+/+ mice on the same diets. Depending on the time of administration of anti-IL11 or anti-IL11RA antibodies to wild-type mice on the HFMCD or WDF, or to db/db mice on the methionine and choline-deficient diet, the antibodies prevented, stopped, or reversed development of fibrosis and steatosis. Blood samples from Il11ra1+/+ mice fed the WDF and given injections of anti-IL11 or anti-IL11RA, as well as from Il11ra1-/- mice fed WDF, had lower serum levels of lipids and glucose than mice not injected with antibody or with disruption of Il11ra1. CONCLUSIONS: Neutralizing antibodies that block IL11 signaling reduce fibrosis, steatosis, hepatocyte death, inflammation and hyperglycemia in mice with diet-induced steatohepatitis. These antibodies also improve the cardiometabolic profile of mice and might be developed for the treatment of NASH.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Hepatitis/prevención & control , Subunidad alfa del Receptor de Interleucina-11/metabolismo , Interleucina-11/antagonistas & inhibidores , Cirrosis Hepática Experimental/prevención & control , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Animales , Muerte Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hepatitis/genética , Hepatitis/metabolismo , Hepatitis/patología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-11/metabolismo , Subunidad alfa del Receptor de Interleucina-11/deficiencia , Subunidad alfa del Receptor de Interleucina-11/genética , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal/efectos de los fármacos , Células THP-1
7.
Biochem Biophys Res Commun ; 532(4): 570-575, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32900486

RESUMEN

Hepatocellular cancer (HCC) is one of the leading causes of mortality worldwide. Unfortunately, a limited choice of anti-cancer drugs is available for treatment, owing to their minimal efficacy and development of acquired resistance. Autophagy, a cellular survival pathway, often exhibits a pleiotropic role in HCC progression. Studies show increased autophagy in established HCC, promoting the survival of HCC cells in the tumour microenvironment. Therefore, novel anti-autophagy drugs hold promise for preventing HCC progression. Here, using a non-biased transcriptomics analysis in HepG2 cells we demonstrate the existence of an autophagy-FOXM1 nexus regulating growth in HepG2 cells. Additionally, we show that suppression of autophagy by an Unc-51 Like Autophagy Activating Kinase 1(ULK1) inhibitor not only attenuates the expression of FOXM1 and its transcriptional targets, but also has a synergistic effect on the inhibition of HepG2 growth when combined with FOXM1 inhibitors. Thus, the autophagic protein, ULK1, is a promising candidate for preventing HCC progression. Collectively, our results provide new insight into the role of autophagy in HCC growth and are a proof-of concept for combinatorial therapy using ULK1 and FOXM1 inhibitors.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Carcinoma Hepatocelular/metabolismo , Proteína Forkhead Box M1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/antagonistas & inhibidores , Carcinoma Hepatocelular/genética , Proliferación Celular , Proteína Forkhead Box M1/antagonistas & inhibidores , Silenciador del Gen , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Neoplasias Hepáticas/genética , Transducción de Señal/efectos de los fármacos
8.
Mol Genet Metab ; 129(1): 3-12, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31787497

RESUMEN

The glycogen storage diseases are a group of inherited metabolic disorders that are characterized by specific enzymatic defects involving the synthesis or degradation of glycogen. Each disorder presents with a set of symptoms that are due to the underlying enzyme deficiency and the particular tissues that are affected. Autophagy is a process by which cells degrade and recycle unneeded or damaged intracellular components such as lipids, glycogen, and damaged mitochondria. Recent studies showed that several of the glycogen storage disorders have abnormal autophagy which can disturb normal cellular metabolism and/or mitochondrial function. Here, we provide a clinical overview of the glycogen storage disorders, a brief description of autophagy, and the known links between specific glycogen storage disorders and autophagy.


Asunto(s)
Autofagia , Enfermedad del Almacenamiento de Glucógeno/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno/etiología , Glucógeno/metabolismo , Animales , Enfermedad del Almacenamiento de Glucógeno/patología , Enfermedad del Almacenamiento de Glucógeno Tipo I/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno Tipo I/etiología , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno Tipo II/etiología , Glucogenólisis , Humanos , Músculo Esquelético/fisiopatología
9.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344721

RESUMEN

Thermogenesis is the production of heat that occurs in all warm-blooded animals. During cold exposure, there is obligatory thermogenesis derived from body metabolism as well as adaptive thermogenesis through shivering and non-shivering mechanisms. The latter mainly occurs in brown adipose tissue (BAT) and muscle; however, white adipose tissue (WAT) also can undergo browning via adrenergic stimulation to acquire thermogenic potential. Thyroid hormone (TH) also exerts profound effects on thermoregulation, as decreased body temperature and increased body temperature occur during hypothyroidism and hyperthyroidism, respectively. We have termed the TH-mediated thermogenesis under thermoneutral conditions "activated" thermogenesis. TH acts on the brown and/or white adipose tissues to induce uncoupled respiration through the induction of the uncoupling protein (Ucp1) to generate heat. TH acts centrally to activate the BAT and browning through the sympathetic nervous system. However, recent studies also show that TH acts peripherally on the BAT to directly stimulate Ucp1 expression and thermogenesis through an autophagy-dependent mechanism. Additionally, THs can exert Ucp1-independent effects on thermogenesis, most likely through activation of exothermic metabolic pathways. This review summarizes thermogenic effects of THs on adipose tissues.


Asunto(s)
Tejido Adiposo/metabolismo , Termogénesis , Hormonas Tiroideas/metabolismo , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético , Glucosa/metabolismo , Humanos , Mitocondrias/metabolismo , Oxidación-Reducción
10.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244266

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors which belong to the nuclear hormone receptor superfamily. They regulate key aspects of energy metabolism within cells. Recently, PPARα has been implicated in the regulation of autophagy-lysosomal function, which plays a key role in cellular energy metabolism. PPARα transcriptionally upregulates several genes involved in the autophagy-lysosomal degradative pathway that participates in lipolysis of triglycerides within the hepatocytes. Interestingly, a reciprocal regulation of PPARα nuclear action by autophagy-lysosomal activity also exists with implications in lipid metabolism. This review succinctly discusses the unique relationship between PPARα nuclear action and lysosomal activity and explores its impact on hepatic lipid homeostasis under pathological conditions such as non-alcoholic fatty liver disease (NAFLD).


Asunto(s)
Lipólisis/fisiología , Hígado/metabolismo , Lisosomas/metabolismo , PPAR alfa/metabolismo , Animales , Autofagia/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Humanos , Lisosomas/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Co-Represor 1 de Receptor Nuclear/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Triglicéridos/metabolismo
12.
J Biol Chem ; 291(1): 198-214, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26453307

RESUMEN

MTORC2-AKT is a key regulator of carbohydrate metabolism and insulin signaling due to its effects on FOXO1 phosphorylation. Interestingly, both FOXO1 and thyroid hormone (TH) have similar effects on carbohydrate and energy metabolism as well as overlapping transcriptional regulation of many target genes. Currently, little is known about the regulation of MTORC2-AKT or FOXO1 by TH. Accordingly, we performed hepatic transcriptome profiling in mice after FOXO1 knockdown in the absence or presence of TH, and we compared these results with hepatic FOXO1 and THRB1 (TRß1) ChIP-Seq data. We identified a subset of TH-stimulated FOXO1 target genes that required co-regulation by FOXO1 and TH. TH activation of FOXO1 was directly linked to an increase in SIRT1-MTORC2 interaction and RICTOR deacetylation. This, in turn, led to decreased AKT and FOXO1 phosphorylation. Moreover, TH increased FOXO1 nuclear localization, DNA binding, and target gene transcription by reducing AKT-dependent FOXO1 phosphorylation in a THRB1-dependent manner. These events were associated with TH-mediated oxidative phosphorylation and NAD(+) production and suggested that downstream metabolic effects by TH can post-translationally activate other transcription factors. Our results showed that RICTOR/MTORC2-AKT can integrate convergent hormonal and metabolic signals to provide coordinated and sensitive regulation of hepatic FOXO1-target gene expression.


Asunto(s)
Proteínas Portadoras/metabolismo , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Hormonas Tiroideas/farmacología , Acetilación/efectos de los fármacos , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina , Activación Enzimática/efectos de los fármacos , Proteína Forkhead Box O1 , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones Endogámicos C57BL , NAD/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina , Receptores de Hormona Tiroidea/metabolismo , Sirtuina 1/metabolismo , Regulación hacia Arriba/efectos de los fármacos
13.
Mol Genet Metab ; 122(3): 95-98, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28888852

RESUMEN

GSD Ia (von Gierke Disease, Glycogen Storage Disease Type Ia) is a devastating genetic disorder with long-term sequelae, such as non-alcoholic fatty liver disease and renal failure. Down-regulated autophagy is involved in the development of hepatic metabolic dysfunction in GSD Ia; however, the role of autophagy in the renal pathology is unknown. Here we show that autophagy is impaired and endoplasmic reticulum (ER) stress is increased in the kidneys of a mouse model of GSD Ia. Induction of autophagy by rapamycin also reduces this ER stress. Taken together, these results show an additional role for autophagy down-regulation in the pathogenesis of GSD Ia, and provide further justification for the use of autophagy modulators in GSD Ia.


Asunto(s)
Autofagia/genética , Estrés del Retículo Endoplásmico/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/fisiopatología , Riñón/patología , Animales , Autofagia/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación hacia Abajo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glucosa-6-Fosfatasa/metabolismo , Glucosa-6-Fosfato/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Inmunosupresores/farmacología , Ratones , Sirolimus/farmacología
14.
J Hepatol ; 64(2): 370-379, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26462884

RESUMEN

BACKGROUND & AIMS: Glucose-6-phosphatase (G6Pase α, G6PC) deficiency, also known as von Gierke's disease or GSDIa, is the most common glycogen storage disorder. It is characterized by a decreased ability of the liver to convert glucose-6-phosphate (G6P) to glucose leading to glycogen and lipid over-accumulation progressing to liver failure and/or hepatomas and carcinomas. Autophagy of intracellular lipid stores (lipophagy) has been shown to stimulate fatty acid ß-oxidation in hepatic cells. Thus, we examined autophagy and its effects on reducing hepatic lipid over-accumulation in several cell culture and animal models of GSDIa. METHODS: Autophagy in G6PC-deficient hepatic cell lines, mice, and dogs was measured by Western blotting for key autophagy markers. Pro-autophagic Unc51-like kinase 1 (ULK1/ATG1) was overexpressed in G6PC-deficient hepatic cells, and lipid clearance and oxidative phosphorylation measured. G6PC(-/-) mice and GSDIa dogs were treated with rapamycin and assessed for liver function. RESULTS: Autophagy was impaired in the cell culture, mouse, and canine models of GSDIa. Stimulation of the anti-autophagic mTOR, and inhibition of the pro-autophagic AMPK pathways occurred both in vitro and in vivo. Induction of autophagy by ULK1/ATG1 overexpression decreased lipid accumulation and increased oxidative phosphorylation in G6PC-deficient hepatic cells. Rapamycin treatment induced autophagy and decreased hepatic triglyceride and glycogen content in G6PC(-/-) mice, as well as reduced liver size and improved circulating markers of liver damage in GSDIa dogs. CONCLUSIONS: Autophagy is impaired in GSDIa. Pharmacological induction of autophagy corrects hepatic lipid over-accumulation and may represent a new therapeutic strategy for GSDIa.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Hepatocitos/metabolismo , Hígado/patología , Animales , Autofagia/efectos de los fármacos , Autofagia/fisiología , Perros , Glucosa-6-Fosfatasa/metabolismo , Inmunosupresores/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Tamaño de los Órganos , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Triglicéridos/metabolismo
15.
Biochem Biophys Res Commun ; 480(3): 461-467, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27773823

RESUMEN

Short-chain fatty acids (SCFAs) are gut microbial fermentation products derived from dietary fiber sources. Although depletion of gut microflora has been linked to the development of liver disease, the direct effects of SCFAs on intracellular hepatic processes are not well understood. In this study, we demonstrated that the SCFAs, propionate and butyrate, regulated autophagic flux in hepatic cells in a cell-autonomous manner. Induction of autophagy by SCFAs required PPARγ stimulation of Uncoupling Protein 2 (UCP2) expression that was associated with reduced intracellular ATP levels and activation of PRKAA1/AMPK (protein kinase, AMP-activated, alpha 1 catalytic subunit). In addition, elimination of gut flora by chronic antibiotic treatment diminished basal hepatic autophagy in mice suggesting that gut microbiota can regulate hepatic autophagy. These findings provide novel insights into the interplay between diet, gut microbiota, short chain fatty acids, and hepatic autophagic signaling.


Asunto(s)
Autofagia/fisiología , Microbioma Gastrointestinal/fisiología , Hepatocitos/citología , Hepatocitos/metabolismo , Proteína Desacopladora 2/metabolismo , Animales , Butiratos/metabolismo , Línea Celular , Células Cultivadas , Ácidos Grasos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Propionatos/metabolismo
16.
Biochem Biophys Res Commun ; 479(3): 476-481, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27651333

RESUMEN

Non-alcoholic steatohepatitis (NASH) is one of the most common causes of liver failure worldwide. It is characterized by excess fat accumulation, inflammation, and increased lipotoxicity in hepatocytes. Currently, there are limited treatment options for NASH due to lack of understanding of its molecular etiology. In the present study, we demonstrate that the expression of fat mass and obesity associated gene (FTO) is significantly increased in the livers of NASH patients and in a rodent model of NASH. Furthermore, using human hepatic cells, we show that genetic silencing of FTO protects against palmitate-induced oxidative stress, mitochondrial dysfunction, ER stress, and apoptosis in vitro. Taken together, our results show that FTO may have a deleterious role in hepatic cells during lipotoxic conditions, and strongly suggest that up-regulation of FTO may contribute to the increased liver damage in NASH.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Silenciador del Gen , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo , Animales , Apoptosis , Supervivencia Celular , Ceramidas/química , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Inmunohistoquímica , Inflamación , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo , Obesidad/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Consumo de Oxígeno , Ácido Palmítico/farmacología
18.
Hepatology ; 59(4): 1366-80, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23929677

RESUMEN

UNLABELLED: Caffeine is one of the world's most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity-related condition that recently has become the major cause of liver disease worldwide. Although caffeine is known to stimulate hepatic fat oxidation, its mechanism of action on lipid metabolism is still not clear. Here, we show that caffeine surprisingly is a potent stimulator of hepatic autophagic flux. Using genetic, pharmacological, and metabolomic approaches, we demonstrate that caffeine reduces intrahepatic lipid content and stimulates ß-oxidation in hepatic cells and liver by an autophagy-lysosomal pathway. Furthermore, caffeine-induced autophagy involved down-regulation of mammalian target of rapamycin signaling and alteration in hepatic amino acids and sphingolipid levels. In mice fed a high-fat diet, caffeine markedly reduces hepatosteatosis and concomitantly increases autophagy and lipid uptake in lysosomes. CONCLUSION: These results provide novel insight into caffeine's lipolytic actions through autophagy in mammalian liver and its potential beneficial effects in NAFLD.


Asunto(s)
Autofagia/efectos de los fármacos , Cafeína/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Lisosomas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Autofagia/fisiología , Cafeína/uso terapéutico , Línea Celular Tumoral , Dieta Alta en Grasa/efectos adversos , Regulación hacia Abajo/efectos de los fármacos , Hígado Graso/inducido químicamente , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Células Hep G2 , Humanos , Técnicas In Vitro , Lipólisis/efectos de los fármacos , Lipólisis/fisiología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Oxidación-Reducción/efectos de los fármacos , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo
19.
FASEB J ; 28(5): 2272-80, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24448824

RESUMEN

Enzyme or gene replacement therapy with acid α-glucosidase (GAA) has achieved only partial efficacy in Pompe disease. We evaluated the effect of adjunctive clenbuterol treatment on cation-independent mannose-6-phosphate receptor (CI-MPR)-mediated uptake and intracellular trafficking of GAA during muscle-specific GAA expression with an adeno-associated virus (AAV) vector in GAA-knockout (KO) mice. Clenbuterol, which increases expression of CI-MPR in muscle, was administered with the AAV vector. This combination therapy increased latency during rotarod and wirehang testing at 12 wk, in comparison with vector alone. The mean urinary glucose tetrasaccharide (Glc4), a urinary biomarker, was lower in GAA-KO mice following combination therapy, compared with vector alone. Similarly, glycogen content was lower in cardiac and skeletal muscle following 12 wk of combination therapy in heart, quadriceps, diaphragm, and soleus, compared with vector alone. These data suggested that clenbuterol treatment enhanced trafficking of GAA to lysosomes, given that GAA was expressed within myofibers. The integral role of CI-MPR was demonstrated by the lack of effectiveness from clenbuterol in GAA-KO mice that lacked CI-MPR in muscle, where it failed to reverse the high glycogen content of the heart and diaphragm or impaired wirehang performance. However, the glycogen content of skeletal muscle was reduced by the addition of clenbuterol in the absence of CI-MPR, as was lysosomal vacuolation, which correlated with increased AKT signaling. In summary, ß2-agonist treatment enhanced CI-MPR-mediated uptake and trafficking of GAA in mice with Pompe disease, and a similarly enhanced benefit might be expected in other lysosomal storage disorders.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Clenbuterol/farmacología , Enfermedad del Almacenamiento de Glucógeno Tipo II/metabolismo , Glucógeno/metabolismo , Receptor IGF Tipo 2/metabolismo , alfa-Glucosidasas/metabolismo , Animales , Cationes , Densitometría , Dependovirus/metabolismo , Extremidades/fisiología , Vectores Genéticos , Células HEK293 , Humanos , Lisosomas/metabolismo , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , alfa-Glucosidasas/genética
20.
Biochem Biophys Res Commun ; 447(4): 569-73, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24735537

RESUMEN

Insulin and glucagon signaling in the liver are major contributors to glucose homeostasis. Patients with Type 1 and Type 2 diabetes have impaired glycemic control due, in part, to dysregulation of the opposing actions of these hormones. While hyperglucagonemia is a common feature in diabetes, its precise role in insulin resistance is not well understood. Recently, metformin, an AMPK activator, was shown to regulate hepatic glucose output via inhibition of glucagon-induced cAMP/PKA signaling; however, the mechanism for how PKA inhibition leads to AMPK activation in human hepatic cells is not known. Here we show that glucagon impairs insulin-mediated AKT phosphorylation in human hepatic cell line Huh7. This impairment of AKT activation by glucagon is due to PKA-mediated inhibition of AMPK via increased inhibitory phosphorylation of AMPK(Ser173) and reduced activating phosphorylation of AMPK(Thr172). In contrast, metformin decreases PKA activity, leading to decreased pAMPK(Ser173) and increased pAMPK(Thr172). These data support a novel mechanism involving PKA-dependent AMPK phosphorylation that provides new insight into how glucagon and metformin modulate hepatic insulin resistance.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucagón/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hipoglucemiantes/farmacología , Insulina/metabolismo , Metformina/farmacología , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Resistencia a la Insulina/fisiología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA