Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Technol Assess Health Care ; 39(1): e4, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36628458

RESUMEN

OBJECTIVES: Based on a real-world collaboration with innovators in applying early health economic modeling, we aimed to offer practical steps that health technology assessment (HTA) researchers and innovators can follow and promote the usage of early HTA among research and development (R&D) communities. METHODS: The HTA researcher was approached by the innovator to carry out an early HTA ahead of the first clinical trial of the technology, a soft robotic sock for poststroke patients. Early health economic modeling was selected to understand the potential value of the technology and to help uncover the information gap. Threshold analysis was used to identify the target product profiles. Value-of-information analysis was conducted to understand the uncertainties and the need for further research. RESULTS: Based on the expected price and clinical effectiveness by the innovator, the new technology was found to be cost-saving compared to the current practice. Risk reduction in deep vein thrombosis and ankle contracture, the incidence rate of ankle contracture, the compliance rate of the new technology, and utility scores were found to have high impacts on the value-for-money of the new technology. The value of information was low if the new technology can achieve the expected clinical effectiveness. A list of parameters was recommended for data collection in the impending clinical trial. CONCLUSIONS: This work, based on a real-world collaboration, has illustrated that early health economic modeling can inform medical innovation development. We provided practical steps in order to achieve more efficient R&D investment in medical innovation moving forward.


Asunto(s)
Robótica , Humanos , Singapur , Análisis Costo-Beneficio , Economía Médica , Evaluación de la Tecnología Biomédica
2.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36991974

RESUMEN

In recent years, the advent of soft robotics has changed the landscape of wearable technologies. Soft robots are highly compliant and malleable, thus ensuring safe human-machine interactions. To date, a wide variety of actuation mechanisms have been studied and adopted into a multitude of soft wearables for use in clinical practice, such as assistive devices and rehabilitation modalities. Much research effort has been put into improving their technical performance and establishing the ideal indications for which rigid exoskeletons would play a limited role. However, despite having achieved many feats over the past decade, soft wearable technologies have not been extensively investigated from the perspective of user adoption. Most scholarly reviews of soft wearables have focused on the perspective of service providers such as developers, manufacturers, or clinicians, but few have scrutinized the factors affecting adoption and user experience. Hence, this would pose a good opportunity to gain insight into the current practice of soft robotics from a user's perspective. This review aims to provide a broad overview of the different types of soft wearables and identify the factors that hinder the adoption of soft robotics. In this paper, a systematic literature search using terms such as "soft", "robot", "wearable", and "exoskeleton" was conducted according to PRISMA guidelines to include peer-reviewed publications between 2012 and 2022. The soft robotics were classified according to their actuation mechanisms into motor-driven tendon cables, pneumatics, hydraulics, shape memory alloys, and polyvinyl chloride muscles, and their pros and cons were discussed. The identified factors affecting user adoption include design, availability of materials, durability, modeling and control, artificial intelligence augmentation, standardized evaluation criteria, public perception related to perceived utility, ease of use, and aesthetics. The critical areas for improvement and future research directions to increase adoption of soft wearables have also been highlighted.


Asunto(s)
Robótica , Dispositivos de Autoayuda , Humanos , Inteligencia Artificial , Músculos
3.
Neuroimage ; 202: 116023, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31325644

RESUMEN

Soft robotics have come to the forefront of devices available for rehabilitation following stroke; however, objective evaluation of the specific brain changes following rehabilitation with these devices is lacking. In this study, we utilized functional Magnetic Resonance Imaging (fMRI) and dynamic causal modeling (DCM) to characterize the activation of brain areas with a MRI compatible glove actuator compared to the conventional manual therapy. Thirteen healthy volunteers engaged in a motor-visual fMRI task under four different conditions namely active movement, manual passive movement, passive movement using a glove actuator, and crude tactile stimulation. Brain activity following each task clearly identified the somatosensory motor area (SMA) as a major hub orchestrating activity between the primary motor (M1) and sensory (S1) cortex. During the glove-induced passive movement, activity in the motor-somatosensory areas was reduced, but there were significant increases in motor cortical activity compared to manual passive movement. We estimated the modulatory signaling from within a defined sensorimotor network (SMA, M1, and S1), through DCM and highlighted a dual-gating of sensorimotor inputs to the SMA. Proprioceptive signaling from S1 to the SMA reflected positive coupling for the manually assisted condition, while M1 activity was positively coupled to the SMA during the glove condition. Importantly, both the S1 and M1 were shown to influence each other's connections with the SMA, with inhibitory nonlinear modulation by the M1 on the S1-SMA connection, and similarly S1 gated the M1-SMA connection. The work is one of the first to have applied effective connectivity to examine sensorimotor activity ensued by manual or robotic passive range of motion exercise, crude tactile stimulation, and voluntary movements to provide a basis for the mechanism by which soft actuators can alter brain activity.


Asunto(s)
Conectoma/métodos , Ejercicio Físico/fisiología , Actividad Motora/fisiología , Corteza Motora/fisiología , Propiocepción/fisiología , Desempeño Psicomotor/fisiología , Rango del Movimiento Articular/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Adulto , Humanos , Imagen por Resonancia Magnética/métodos , Corteza Motora/diagnóstico por imagen , Estimulación Física , Corteza Somatosensorial/diagnóstico por imagen , Adulto Joven
4.
Biol Res ; 50(1): 12, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28302167

RESUMEN

OBJECTIVE: To characterize the differences between the primary and metastatic melanoma cell lines grown in 2D cultures and 3D cultures. METHODS: Primary melanoma cells (WM115) and metastatic melanoma cells (WM266) extracted from a single donor was cultured in 2D as well as 3D cultures. These cells were characterized using proton NMR spectrometry, and the qualitative chemical shifts markers were identified and discussed. RESULTS: In monolayer culture (2D), we observed one qualitative chemical shift marker for primary melanoma cells. In spheroid cultures (3D), we observed nine significant chemical shifts, of which eight markers were specific for primary melanoma spheroids, whereas the other one marker was specific to metastatic melanoma spheroids. This study suggests that the glucose accumulation and phospholipid composition vary significantly between the primary and metastatic cells lines that are obtained from a single donor and also with the cell culturing methods. 14 qualitative chemical shift markers were obtained in the comparison between monolayer culture and spheroids cultures irrespective of the differences in the cell lines. Among which 4 were unique to monolayer cultures whereas 10 chemical shifts were unique to the spheroid cultures. This study also shows that the method of cell culture would drastically affect the phospholipid composition of the cells and also depicts that the cells in spheroid culture closely resembles the cells in vivo. CONCLUSION: This study shows the high specificity of proton NMR spectrometry in characterizing cancer cell lines and also shows the variations in the glucose accumulation and phospholipid composition between the primary and metastatic melanoma cell lines from the same donor. Differences in the cell culture method does plays an important role in phospholipid composition of the cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Espectroscopía de Resonancia Magnética/métodos , Melanoma/patología , Melanoma/secundario , Análisis de Varianza , Biomarcadores de Tumor , Línea Celular Tumoral , Glucosa/análisis , Glucosa/metabolismo , Humanos , Melanoma/metabolismo , Fosfolípidos/análisis , Fosfolípidos/metabolismo , Esferoides Celulares , Factores de Tiempo
5.
Soft Robot ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813671

RESUMEN

Robotics is entering our daily lives. The discipline is increasingly crucial in fields such as agriculture, medicine, and rescue operations, impacting our food, health, and planet. At the same time, it is becoming evident that robotic research must embrace and reflect the diversity of human society to address these broad challenges effectively. In recent years, gender inclusivity has received increasing attention, but it still remains a distant goal. In addition, awareness is rising around other dimensions of diversity, including nationality, religion, and politics. Unfortunately, despite the efforts, empirical evidence shows that the field has still a long way to go before achieving a sufficient level of equality, diversity, and inclusion across these spectra. This study focuses on the soft robotics community-a growing and relatively recent subfield-and it outlines the present state of equality and diversity panorama in this discipline. The article argues that its high interdisciplinary and accessibility make it a particularly welcoming branch of robotics. We discuss the elements that make this subdiscipline an example for the broader robotic field. At the same time, we recognize that the field should still improve in several ways and become more inclusive and diverse. We propose concrete actions that we believe will contribute to achieving this goal, and provide metrics to monitor its evolution.

6.
Crit Rev Biomed Eng ; 41(4-5): 309-21, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24941411

RESUMEN

Anterior cruciate ligament (ACL) injuries are highly prevalent during sporting activities. These injuries often are associated with maneuvers involving landing or sudden change in direction, which are thought to "destabilize" the knee joint and cause ACL rupture. ACL injuries can affect one's mobility and quality of life because of abnormal locomotion and consequent knee pain. This review presents key findings from prior biomechanics studies that aimed to understand ACL injury mechanisms. These studies, ranging from motion analyses and in vitro impact tests to knee finite element simulations and multibody dynamics musculoskeletal simulations, have collectively revealed the multifactorial nature of ACL injury mechanisms. Therefore, the second part of this review addresses the strong need to develop prophylactic strategies that can attenuate the factors involved in ACL injury mechanisms, such that the knee joint can be protected from ACL injuries. Previous studies have emphasized strategies such as knee bracing and strength training of important muscle groups. Although these strategies were intended to mitigate ACL injury-causing factors, their clinical outcomes remain controversial. Given the rapid progress of technologies in this area, however, the current state of uncertainty will gradually lead to prospective biomechanics research that can adopt a multifactorial approach toward protecting the ACL from injury.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Traumatismos de la Rodilla/prevención & control , Traumatismos de la Rodilla/fisiopatología , Animales , Ligamento Cruzado Anterior/fisiopatología , Fenómenos Biomecánicos , Humanos
7.
Soft Robot ; 10(2): 301-313, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36037007

RESUMEN

Soft robotic pneumatic actuators generally excel in the specific application they were designed for but lack the versatility to be redeployed to other applications. This study presents a novel and versatile soft compact multilayer extension actuator (MEA) to overcome this limitation. We use the MEA linear output in different hybrid configurations to achieve this versatility. The unique design and fabrication of the MEA allow for a compact elastomeric actuator with innate tension, capable of reverting to its initial state without the need for external stimulus. The MEA is made from alternating elastomers with different Young's modulus, bestowing the MEA with high durability, force, and extension capabilities. In addition, the MEA is lightweight at 4 g, capable of a high force-to-weight ratio of 1000 and an extension ratio of 525%. We also explored varying the MEA parameters, such as its material and dimension, which further enhance its properties. Subsequently, we showed four different design configurations encompassing the MEA to produce four basic motions, that is, push, pull, bend, and twist. Finally, we demonstrated three possible hybrid configurations for manipulation, locomotion, and assistive applications that highlight the versatility, manipulability, and modularity of the MEA.

8.
Soft Robot ; 10(4): 785-796, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36951665

RESUMEN

Recent advances in soft robotics demonstrate the requirement of modular actuation to enable the rapid replacement of actuators for maintenance and functionality extension. There remain challenges to designing soft actuators capable of different motions with a consistent appearance for simplifying fabrication and modular connection. Origami structures reshaping along with their unique creases became a powerful tool to provide compact constraint layers for soft pneumatic actuators. Inspired by Waterbomb and Kresling origami, this article presents three types of vacuum-driven soft actuators with a cubic shape and different origami skins, featuring contraction, bending, and twisting-contraction combined motions, respectively. In addition, these modular actuators with diversified motion patterns can be directly fabricated by molding silicone shell and constraint layers together. Actuators with different geometrical parameters are characterized to optimize the structure and maximize output properties after establishing a theoretical model to predict the deformation. Owing to the shape consistency, our actuators can be further modularized to achieve modular actuation via mortise and tenon-based structures, promoting the possibility and efficiency of module connection for versatile tasks. Eventually, several types of modular soft robots are created to achieve fragile object manipulation and locomotion in various environments to show their potential applications.

9.
Soft Robot ; 10(4): 737-748, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36827310

RESUMEN

Soft robots have received much attention due to their impressive capabilities including high flexibility and inherent safety features for humans or unstructured environments compared with hard-bodied robots. Soft actuators are the crucial components of soft robotic systems. Soft robots require dexterous soft actuators to provide the desired deformation for different soft robotic applications. Most of the existing soft actuators have only one or two deformation modes. In this article, a new soft pneumatic actuator (SPA) is proposed taking inspiration from Kirigami. Kirigami-inspired cuts are applied to the actuator design, which enables the SPA to be equipped with multiple deformation modes. The proposed Kirigami-inspired soft pneumatic actuator (KiriSPA) is capable of producing bending motion, stretching motion, contraction motion, combined motion of bending and stretching, and combined motion of bending and contraction. The KiriSPA can be directly manufactured using 3D printers based on the fused deposition modeling technology. Finite element method is used to analyze and predict the deformation modes of the KiriSPA. We also investigated the step response, creep, hysteresis, actuation speed, stroke, workspace, stiffness, power density, and blocked force of the KiriSPA. Moreover, we demonstrated that KiriSPAs can be combined to expand the capabilities of various soft robotic systems including the soft robotic gripper for delicate object manipulation, the soft planar robotic manipulator for picking objects in the confined environment, the quadrupedal soft crawling robot, and the soft robot with the flipping locomotion.

10.
Soft Robot ; 9(6): 1144-1153, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35507964

RESUMEN

Soft actuators and their sensors have always been separate entities with two distinct roles. The omnidirectional compliance of soft robots thus means that multiple sensors have to be used to sense different modalities in the respective planes of motion. With the recent emergence of self-sensing actuators, the two roles have gradually converged to simplify sensing requirements. Self-sensing typically involves embedding a conductive sensing element into the soft actuator and provides multiple state information along the continuum. However, most of these self-sensing actuators are fabricated through manual methods, which results in inconsistent sensing performance. Soft material compliance also imply that both actuator and sensor exhibit nonlinear behaviors during actuation, making sensing more complex. In this regard, machine learning has shown promise in characterizing the nonlinear behavior of soft sensors. Beyond characterization, we show that applying machine learning to soft actuators eliminates the need to implant a sensing element to achieve self-sensing. Fabrication is done using 3D printing, thus ensuring that sensing performance is consistent across the actuators. In addition, our proposed technique is able to estimate the bending curvature of a soft continuum actuator and the external forces applied to the tip of the actuator in real time. Our methodology is generalizable and aims to provide a novel way of multimodal sensing for soft robots across a variety of applications.


Asunto(s)
Robótica , Movimiento (Física) , Conductividad Eléctrica , Aprendizaje Automático , Impresión Tridimensional
11.
ACS Appl Mater Interfaces ; 14(36): 40590-40598, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36039512

RESUMEN

Soft robotics is a rapidly evolving research field that focuses on developing robots with bioinspired actuation/sensing mechanisms and highly flexible soft materials, some of which are similar to those found in living organisms. The hydrogel has the characteristics of excellent biocompatibility, softness, and elasticity, which makes it an ideal candidate material for the preparation of soft robots. Here we utilized a self-healing approach to develop a catalytically driven soft robot, which was constructed by dynamic imine bonds between modular hydrogels. One of the modules was a hydrogel formed by dynamic aldimine cross-linking of chitosan and glutaraldehyde, and the other module was a hydrogel embedded with catalase. The soft hydrogel robot moved because of catalytic reactions between the robot and environment [hydrogen peroxide (H2O2) fuel], giving rise to a fluidic release that supports propulsion, as inspired by the jet-propulsive mechanism in swimming dragonfly larvae. The speed of the soft robot can be mediated by adjusting the concentration of H2O2 and enable/disable movement based on the folding and unfolding of enzymes. In addition, the hydrogel formed by replacing glutaraldehyde with dialdehyde-functionalized PEG2000 had excellent elastic properties, and the soft robot based on PEG2000 had a higher movement speed than that based on glutaraldehyde under the same H2O2 concentration. Moreover, the addition of iron oxide nanoparticles can realize the magnetic guidance of the soft robot and the combination of different modules can realize different motion modes. The highly configurable self-healing catalytic soft robot holds great potential for a variety of interesting applications, including swimming robots, robot-assisted water treatment, and drug release.


Asunto(s)
Odonata , Robótica , Animales , Glutaral , Hidrogeles/química , Peróxido de Hidrógeno
12.
Polymers (Basel) ; 14(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080617

RESUMEN

This paper contributes to a new design of the three-dimensional printable robotic ball joints capable of creating the controllable stiffness linkage between two robot links through pneumatic actuation. The variable stiffness ball joint consists of a soft pneumatic elastomer actuator, a support platform, an inner ball and a socket. The ball joint structure, including the inner ball and the socket, is three-dimensionally printed using polyamide-12 (PA12) by selective laser sintering (SLS) technology as an integral mechanism without the requirement of assembly. The SLS technology can make the ball joint have the advantages of low weight, simple structure, easy to miniaturize and good MRI compatibility. The support platform is designed as a friction-based braking component to increase the stiffness of the ball joint while withstanding the external loads. The soft pneumatic elastomer actuator is responsible for providing the pushing force for the support platform, thereby modulating the frictional force between the inner ball, the socket and the support platform. The most remarkable feature of the proposed variable stiffness design is that the ball joint has 'zero' stiffness when no pressurized air is supplied. In the natural state, the inner ball can be freely rotated and twist inside the socket. The proposed ball joint can be quickly stiffened to lock the current position and orientation of the inner ball relative to the socket when the pressurized air is supplied to the soft pneumatic elastomer actuator. The relationship between the stiffness of the ball joint and the input air pressure is investigated in both rotating and twisting directions. The finite element analysis is conducted to optimize the design of the support platform. The stiffness tests are conducted, demonstrating that a significant stiffness enhancement, up to approximately 508.11 N·mm reaction torque in the rotational direction and 571.93 N·mm reaction torque in the twisting direction at the pressure of 400 kPa, can be obtained. Multiple ball joints can be easily assembled to form a variable stiffness structure, in which each ball joint has a relative position and an independent stiffness. Additionally, the degrees of freedom (DOF) of the ball joint can be readily restricted to build the single-DOF or two-DOFs variable stiffness joints for different robotic applications.

13.
Polymers (Basel) ; 14(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36297851

RESUMEN

Forceps, clamps, and haemostats are essential surgical tools required for all surgical interventions. While they are widely used to grasp, hold, and manipulate soft tissue, their metallic rigid structure may cause tissue damage due to the potential risk of applying excessive gripping forces. Soft pneumatic surgical grippers fabricated by silicone elastomeric materials with low Young's modulus may offer a promising solution to minimize this unintentional damage due to their inherent excellent compliance and compressibility. The goal of this work is to evaluate and compare the grip-induced nerve damage caused by the soft pneumatic elastomeric gripper and conventional haemostats during surgical manipulation. Twenty-four Wistar rats (male, seven weeks) are subjected to sciatic nerve compression (right hind limb) using the soft pneumatic elastomer gripper and haemostats. A histopathological analysis is conducted at different time-points (Day 0, Day 3, Day 7 and Day 13) after the nerve compression to examine the morphological tissue changes between the rats in the 'soft gripper' group and the 'haemostats' group. A free walking analysis is also performed to examine the walking function of the rats after recovery from different time points. Comparing the rigid haemostats and soft gripper groups, there is a visible difference in the degree of axonal vacuolar degeneration between the groups, which could suggest the presence of substantial nerve damage in the 'haemostats' group. The rats in the haemostats group exhibited reduced right hind paw pressure and paw size after the nerve compression. It shows that the rats tend not to exert more force on the affected right hind limb in the haemostats group compared to the soft gripper group. In addition, the stance duration was reduced in the injured right hind limb compared to the normal left hind limb in the haemostats group. These observations show that the soft pneumatic surgical gripper made of silicone elastomeric materials might reduce the severity of grip-induced damage by providing a safe compliant grip compared to the conventional haemostats. The soft pneumatic elastomer gripper could complement the current surgical gripping tool in delicate tissue manipulation.

14.
J Sports Sci ; 29(11): 1143-51, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21774750

RESUMEN

Anterior cruciate ligament (ACL) rupture, during ski-landing, is caused by excessive knee joint forces and kinematics, like anterior tibial translation, internal tibial rotation, and valgus rotation. It is not well understood how these forces/kinematics are directly related to ski-landing impact. In the present study, we applied simulated ski-landing impact to knee specimens, and examined joint force/kinematic responses and their correlations with impact force. Ten human cadaveric knees were subjected to axial impact loading at 70° of flexion to simulate ski-landing impact. Impact was repeated with incremental magnitude until ACL failure. Axial impact forces, anterior-posterior and medial-lateral tibial forces were measured using a tri-axial load cell. Anterior-posterior tibial translation, internal-external tibial rotation, and valgus-varus rotation were determined using a motion-capture system. We found positive correlations of axial impact force with anterior tibial force, medial tibial force, anterior tibial translation, internal tibial rotation, and valgus joint rotation. Axial impact forces were more strongly correlated with anterior tibial forces (R(2) = 0.937 ± 0.050), anterior tibial translation (R(2) = 0.916 ± 0.059), and internal tibial rotation (R(2) = 0.831 ± 0.141) than medial tibial force (R(2) = 0.677 ± 0.193) and valgus joint rotation (R(2) = 0.630+0.271). During ski-landing, these joint forces/kinematics can synergistically act to increase ACL injury risk, whereby the failure mechanism would be dominated by anterior tibial forces, anterior tibial translation, and internal tibial rotation.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Traumatismos de la Rodilla/etiología , Articulación de la Rodilla/fisiología , Rango del Movimiento Articular , Esquí/fisiología , Tibia/fisiología , Fenómenos Biomecánicos , Cadáver , Humanos , Factores de Riesgo , Rotación , Estrés Mecánico , Soporte de Peso
15.
J Neural Eng ; 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34933283

RESUMEN

OBJECTIVE: Soft-robotic-assisted training may improve motor function during post-stroke recovery, but the underlying physiological changes are not clearly understood. We applied a single-session of intensive proprioceptive stimulation to stroke survivors using a soft robotic glove to delineate its short-term influence on brain functional activity and connectivity. APPROACH: In this study, we utilized task-based and resting-state functional magnetic resonance imaging (fMRI) to characterize the changes in different brain networks following a soft robotic intervention. Nine stroke patients with hemiplegic upper limb engaged in resting-state and motor-task fMRI. The motor tasks comprised two conditions: active movement of fingers (active task) and glove-assisted active movement using a robotic glove (glove-assisted task), both with visual instruction. Each task was performed using bilateral hands simultaneously or the affected hand only. The same set of experiments was repeated following a 30-minute treatment of continuous passive motion (CPM) using a robotic glove. MAIN RESULTS: On simultaneous bimanual movement, increased activation of supplementary motor area (SMA) and primary motor area (M1) were observed after CPM treatment compared to the pre-treatment condition, both in active and glove-assisted task. However, when performing the tasks solely using the affected hand, the phenomena of increased activity were not observed either in active or glove-assisted task. The comparison of the resting-state fMRI between before and after CPM showed the connectivity of the supramarginal gyrus and SMA was increased in the somatosensory network and salience network. SIGNIFICANCE: This study demonstrates how passive motion exercise activates M1 and SMA in the post-stroke brain. The effective proprioceptive motor integration seen in bimanual exercise in contrast to the unilateral affected hand exercise suggests that the unaffected hemisphere might reconfigure connectivity to supplement damaged neural networks in the affected hemisphere. The somatosensory modulation rendered by the intense proprioceptive stimulation would affect the motor learning process in stroke survivors.

16.
Soft Robot ; 8(5): 577-587, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32976080

RESUMEN

The compliant nature of soft fingers allows for safe and dexterous manipulation of objects by humans in an unstructured environment. A soft prosthetic finger design with tactile sensing capabilities for texture discrimination and subsequent sensory stimulation has the potential to create a more natural experience for an amputee. In this work, a pneumatically actuated soft biomimetic finger is integrated with a textile neuromorphic tactile sensor array for a texture discrimination task. The tactile sensor outputs were converted into neuromorphic spike trains, which emulate the firing pattern of biological mechanoreceptors. Spike-based features from each taxel compressed the information and were then used as inputs for the support vector machine classifier to differentiate the textures. Our soft biomimetic finger with neuromorphic encoding was able to achieve an average overall classification accuracy of 99.57% over 16 independent parameters when tested on 13 standardized textured surfaces. The 16 parameters were the combination of 4 angles of flexion of the soft finger and 4 speeds of palpation. To aid in the perception of more natural objects and their manipulation, subjects were provided with transcutaneous electrical nerve stimulation to convey a subset of four textures with varied textural information. Three able-bodied subjects successfully distinguished two or three textures with the applied stimuli. This work paves the way for a more human-like prosthesis through a soft biomimetic finger with texture discrimination capabilities using neuromorphic techniques that provide sensory feedback; furthermore, texture feedback has the potential to enhance user experience when interacting with their surroundings.


Asunto(s)
Retroalimentación Sensorial , Percepción del Tacto , Biomimética , Dedos , Humanos , Tacto/fisiología , Percepción del Tacto/fisiología
17.
Soft Robot ; 7(1): 30-43, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31483202

RESUMEN

Soft pneumatic actuators (SPAs) have existed for many years as one of the mainstream actuators. Along with the rise of soft robotics, the development in SPA designs in recent years was especially rapid and diverse. Particularly with innovations in SPA fabrication, there is an increasing variety of SPAs with different air chamber designs, varied scales, and distinctive motion modalities. Collectively, it can be seen that the majority of the SPAs come in the format of a finger-like one-dimensional actuator. To expand the SPA spectrum, this article gives a detailed and thorough introduction of a new class of SPA, called soft robotic pad (SRP). SRP is a silicone-based two-dimensional (2D) pad-like actuator that can be programmed to do a multiplicity of surface morphing without any change in thickness. We have previously reported a novel fabrication technique for SRP. However, it also came with a major issue-premature failure. Therefore, in this article, we present significant improvements in the fabrication that substantially strengthen the SRPs so that they can withstand higher pressure for future applications. In addition, shape and force modeling are also provided to predict the corresponding outputs upon different pressures. Motion tracking using Vicon system is proposed for the characterization of the 2D surface morphing. As a pioneering step, we also propose one SRP application, a soft wearable assistive pad for elbow flexion, to demonstrate its capabilities. As a new and unique member in the SPA family, SRP brings new dimension and more motion varieties to SPAs, a substantial boost to the application scope for SPAs and soft robots.

18.
ACS Nano ; 14(9): 11860-11875, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32790337

RESUMEN

Emerging soft exoskeletons pose urgent needs for high-performance strain sensors with tunable linear working windows to achieve a high-precision control loop. Still, the state-of-the-art strain sensors require further advances to simultaneously satisfy multiple sensing parameters, including high sensitivity, reliable linearity, and tunable strain ranges. Besides, a wireless sensing system is highly desired to enable facile monitoring of soft exoskeleton in real time, but is rarely investigated. Herein, wireless Ti3C2Tx MXene strain sensing systems were fabricated by developing hierarchical morphologies on piezoresistive layers and incorporating regulatory resistors into circuit designs as well as integrating the sensing circuit with near-field communication (NFC) technology. The wireless MXene sensor system can simultaneously achieve an ultrahigh sensitivity (gauge factor ≥ 14,000) and reliable linearity (R2 ≈ 0.99) within multiple user-designated high-strain working windows (130% to ≥900%). Additionally, the wireless sensing system can collectively monitor the multisegment exoskeleton actuations through a single database channel, largely reducing the data processing loading. We finally integrate the wireless, battery-free MXene e-skin with various soft exoskeletons to monitor the complex actuations that assist hand/leg rehabilitation.


Asunto(s)
Dispositivo Exoesqueleto , Titanio , Suministros de Energía Eléctrica , Monitoreo Fisiológico
19.
J Dance Med Sci ; 23(3): 104-111, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31500692

RESUMEN

The aim of this study was to describe and compare the different character sub-types of Javanese dance from a biomechanical perspective. One professional dancer was asked to repeat a basic motion (standing-up) according to the movement rules that pertain to six character sub-types (humble-refined, proud-refined, humble-strong, proud-strong, monkey, and bird). A motion capture system consisting of seven infrared cameras with a sample rate of 100 Hz and two force plates with a sample rate of 1,000 Hz were used to capture kinematics and kinetics. There were significant differences in the bio-mechanical values we calculated for each character sub-type: range of motion, angular velocity, and ground reaction forces. The refined sub-types (humble-refined and proud-refined) showed the lowest values at the knee joint for range of motion and the lowest ankle, shoulder, and wrist angular velocities. This result suggests that low values in these measurements are related to the smooth movements of refined sub-types. These measurements help describe and contrast the motion patterns of Javanese dance, contributing both to the scientific analysis of Javanese dance and the application of biomechanics to the study of dance more generally.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Baile/fisiología , Articulaciones/fisiología , Rango del Movimiento Articular/fisiología , Soporte de Peso/fisiología , Femenino , Humanos , Indonesia , Extremidad Inferior , Movimiento/fisiología
20.
Soft Robot ; 6(4): 468-482, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31158061

RESUMEN

The use of soft robotic actuators is on the rise because these soft systems offer the advantage of being highly flexible, which affords safer robot-environment interactions and the gentleness necessary to handle delicate objects. However, this advantage becomes a shortcoming in high-force applications where flexible components fold and fail under large loads. Various methods were sought to meet this challenge by providing a level of rigidity to soft components, but previously proposed solutions bring their own drawbacks including bulky systems, addition of superfluous weight, and restriction of actuator motion. Alternatively, this article presents Tubular Jamming, a new and effective means of stiffening that is adaptable to motion, lightweight, and can be implemented with minimal equipment. In this study, the mechanism of tubular jamming is expounded and is demonstrated through two exemplary soft structures: a tubular jammed beam (TJB) and a tubular jammed hinge (TJH). Both TJB and TJH are exhibited in areas of fabrication, characterization, and a few possible examples of implementation in soft robotic systems. In the TJB structure, tubular jamming is found to increase bending stiffness by nearly threefold at the maximum pressure and packing ratio tested, compared with a traditional soft pneumatic actuator (SPA) beam. The TJB is shown to require less supply pressure to achieve the same performance as a traditional SPA and is shown to perform better in maintaining the vertical position of a borne object. A triangular support configuration made from TJBs is demonstrated to be proficient in weight bearing, supporting a load of nearly 33 times its own weight. In the TJH structure, tubular jamming is shown to have a compound effect on torque output, as three jammed tubule hinges produce approximately four times the torque of a single tubule hinge. The TJH is exhibited in a wearable elbow flexion device. Tubular jamming opens new possibilities for soft components to achieve the stiffness needed to perform high-force tasks such as weight bearing and large-scale actuation while retaining the suppleness to enable a safe robot-to-environment interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA