Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 62(31): 12565-12572, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37498665

RESUMEN

Photocatalytic reduction of excess CO2 in the atmosphere to value-added chemicals by visible light can be an effective solution to fuel shortage and global warming. Considering these issues, we designed and successfully synthesized a trinuclear Re(I)-coordinated organic cage (Re-C4R) as the supramolecular photocatalyst. Photophysical, electrochemical properties, and photocatalytic performance comparison of Re-C4R and its mononuclear analogue Re-bpy are discussed in detail. Notably, the covalent linkage of three Re(I) subunits in Re-C4R leads to TONCO = 691 (per Re(I) site in 4 h) more than three times as much as TONCO = 208 of Re-bpy. Compared to Re-bpy, higher current enhancement in the control CV experiments under CO2 was observed for Re-C4R. CO2 adsorption process can be promoted because of the cryptand structure and multiple amine groups of Re-C4R. Moreover, decay lifetimes of Re-C4R are shorter than those of Re-bpy in the ultrafast transient absorption (TA) and photoluminescence (PL) decay spectra, indicating that the trinuclear cryptate structure of Re-C4R could facilitate electron transfer efficiency during CO2 reduction.

2.
Angew Chem Int Ed Engl ; 62(37): e202309172, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37488076

RESUMEN

The multiple metastable excited states provided by excited-state intramolecular proton transfer (ESIPT) molecules are beneficial to bring temperature-dependent and color-tunable long persistent luminescence (LPL). Meanwhile, ESIPT molecules are intrinsically suitable to be modulated as D-π-A structure to obtain both one/two-photon excitation and LPL emission simultaneously. Herein, we report the rational design of a dynamic CdII coordination polymer (LIFM-106) from ESIPT ligand to achieve the above goals. By comparing LIFM-106 with the counterparts, we established a temperature-regulated competitive relationship between singlet excimer and triplet LPL emission. The optimization of ligand aggregation mode effectively boost the competitiveness of the latter. In result, LIFM-106 shows outstanding one/two-photon excited LPL performance with wide temperature range (100-380 K) and tunable color (green to red). The multichannel radiation process was further elucidated by transient absorption and theoretical calculations, benefiting for the application in anti-counterfeiting systems.

3.
ACS Appl Mater Interfaces ; 15(2): 3172-3181, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36621007

RESUMEN

A new design was applied for the facile synthesis of pure organic photoluminescent molecules with dual excited-state intramolecular proton transfer (ESIPT) sites. In this novel class of emitters, full-color panel emission from blue, green, and yellow to red, including white light, can be achieved in different solvents as modulated by the enol-keto(1st)-keto(2nd) tautomer emissions. A comprehensive transient photophysical study verifies that keto(1st) and keto(2nd) have a precursor (<0.8 ps)-successor (∼20 ps)-relayed absorbance relationship, and then a fast equilibrium between the two is established, resulting in dual emissions in the nanosecond scale (∼1900 ps). Through the research on copper ions' selective PL response, the dual-ESIPT mechanism was further verified; in addition, the study of solid-state PL changes upon the stimulus of organic vapor manifests the potential application sensitivity of the molecules as dual-ESIPT sensors. Theoretical results including reaction potential energy surface analyses manifest the fact that dual-proton transfer goes along a sequential route with a smaller energy barrier, firmly supporting the experimental results. An intrinsic system that undergoes intramolecular double proton relayed transfer is thus established for the achievement of much broadened optical responses and full-color display, providing reference for the design and application of advanced dual-ESIPT optical materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA