Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 627(8002): 38, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38443636
2.
Sensors (Basel) ; 18(1)2017 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-29283402

RESUMEN

Heart disease is the leading cause of mortality in the U.S. with approximately 610,000 people dying every year. Effective therapies for many cardiac diseases are lacking, largely due to an incomplete understanding of their genetic basis and underlying molecular mechanisms. Zebrafish (Danio rerio) are an excellent model system for studying heart disease as they enable a forward genetic approach to tackle this unmet medical need. In recent years, our team has been employing electrocardiogram (ECG) as an efficient tool to study the zebrafish heart along with conventional approaches, such as immunohistochemistry, DNA and protein analyses. We have overcome various challenges in the small size and aquatic environment of zebrafish in order to obtain ECG signals with favorable signal-to-noise ratio (SNR), and high spatial and temporal resolution. In this paper, we highlight our recent efforts in zebrafish ECG acquisition with a cost-effective simplified microelectrode array (MEA) membrane providing multi-channel recording, a novel multi-chamber apparatus for simultaneous screening, and a LabVIEW program to facilitate recording and processing. We also demonstrate the use of machine learning-based programs to recognize specific ECG patterns, yielding promising results with our current limited amount of zebrafish data. Our solutions hold promise to carry out numerous studies of heart diseases, drug screening, stem cell-based therapy validation, and regenerative medicine.


Asunto(s)
Electrocardiografía , Animales , Corazón , Microelectrodos , Relación Señal-Ruido , Pez Cebra
3.
Food Chem ; 438: 138043, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37992606

RESUMEN

Listeria monocytogenes, a severe foodborne pathogen causing severe diseases underscores the necessity for the development of a detection system with high specificity, sensitivity and utility. Herein, the PoreGlow system, based on split green fluorescent protein (GFP), was developed and assessed for the fast and accurate detection of L. monocytogenes. Split GFP-encapsulated liposomes were optimized for targeted analysis. The system utilizes listeriolysin O (LLO), a toxin produced by L. monocytogenes that enlarges the pores split GFP-encapsulated liposomes, to detect L. monocytogenes by measuring the fluorescent signal generated when the encapsulated GFP is released and reacted with the externally added fragment of the split GFP. The system exhibited a limit of detection of 0.17 µg/ml for LLO toxin and 10 CFU/mL for L. monocytogenes with high sensitivity and specificity and no cross-reactivity with other bacteria. The PoreGlow system is practical, rapid, and does not require sample pre-treatment, making it a promising tool for the early detection of L. monocytogenes in food products, which is crucial for preventing outbreaks and protecting public health.


Asunto(s)
Listeria monocytogenes , Listeriosis , Humanos , Listeria monocytogenes/genética , Listeriosis/metabolismo , Listeriosis/microbiología , Proteínas Fluorescentes Verdes/genética , Liposomas/metabolismo , Proteínas Hemolisinas/genética
4.
Biosens Bioelectron ; 219: 114819, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36327561

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics have emerged as next-generation molecular diagnostics. In CRISPR-based diagnostics, Cas12 and Cas13 proteins have been widely employed to detect DNA and RNA, respectively. Herein, we developed a novel hybrid Cas protein capable of detecting universal nucleic acids (DNA and RNA). The CRISPR/hybrid Cas system simultaneously recognizes both DNA and RNA, enabling the dual detection of pathogenic viruses in a single tube. Using wild-type (WT) and N501Y mutant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as detection models, we successfully detected both virus strains with a detection limit of 10 viral copies per reaction without cross-reactivity. Furthermore, it is demonstrated the detection of WT SARS-CoV-2 and N501Y mutant variants in clinical samples by using the CRISPR/hybrid Cas system. The hybrid Cas protein is expected to be utilized in a molecular diagnostic method for infectious diseases, tissue and liquid biopsies, and other nucleic acid biomarkers.

5.
J Glaucoma ; 20(8): 488-91, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21968970

RESUMEN

PURPOSE: This study was designed to evaluate the effect of microgravity on the diurnal variation of intraocular pressure (IOP). METHODS: IOPs were measured with the pressure phosphene tonometer in 1 subject (the first Korean astronaut) during spaceflight. IOPs were measured every 3 hours during day time (6 times per day) at 2 separate days in space with 3 repeated measurements at each time on both eyes. A total of 72 measurements were obtained during spaceflight. To obtain control IOP data, IOP was measured using the same protocol on ground before spaceflight. RESULTS: Mean IOP increased by 26.3% during spaceflight compared with that on ground [16.47 ± 0.60 (SD) mm Hg vs. 13.04 ± 0.74 mm Hg, P<0.001). The IOP elevation was maintained until Launch+8 days. There was no significant difference in IOP increase between right and left eyes (16.4 2 ± 0.65 mm Hg right eye vs. 16.53 ± 0.56 mm Hg left eye). There was a different pattern of diurnal variation of IOP during spaceflight compared with that on ground. The IOP at 7 AM was the lowest under microgravity, whereas it was the highest on ground. The slope of the best fit line for diurnal IOP measures was 0.0349 mm Hg/h (95% confidence interval: 0.0082-0.0616) under microgravity and -0.0294 mm Hg/h (95% confidence interval: -0.0063-0.0041) on ground. CONCLUSIONS: The study showed a different diurnal pattern of IOP under microgravity compared with that on ground. This result suggests that gravity and subsequent body fluid shift is one of the determining factors of IOP diurnal variation.


Asunto(s)
Ritmo Circadiano/fisiología , Presión Intraocular/fisiología , Vuelo Espacial , Tonometría Ocular/instrumentación , Ingravidez , Adulto , Femenino , Humanos , Fosfenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA