Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(12): 8583-8591, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36883940

RESUMEN

In order to improve the performance of optical fiber sensing and expand its application, a photonic crystal fiber (PCF) plasmonic sensor with a U-shaped channel based on surface plasmon resonance (SPR) is proposed. We have studied the general influence rules of structural parameters such as the radius of the air hole, the thickness of the gold film and the number of U-shaped channels using COMSOL based on the finite element method. The dispersion curves and loss spectrum of the surface plasmon polariton (SPP) mode and the Y-polarization (Y-pol) mode as well as the distribution of the electric field intensity (normE) under various conditions are studied using the coupled mode theory. The maximum refractive index (RI) sensitivity achieved in the RI range of 1.38-1.43 is 24.1 µm RIU-1, which corresponds to a full width at half maximum (FWHM) of 10.0 nm, a figure of merit (FOM) of 2410 RIU-1 and a resolution of 4.15 × 10-6 RIU. The results show that the proposed sensor combines the SPR effect, which is extremely sensitive to changes in the RI of the surrounding medium and realizes real-time detection of the external environment by analyzing the light signal modulated by the sensor. In addition, the detection range and sensitivity can be extended by adjusting the structural parameters. The proposed sensor has a simple structure with excellent sensing performance, which provides a new idea and implementation method for real-time detection, long-range measurement, complex environment monitoring and highly integrated sensing, and has a strong potential practical value.

2.
J Chem Phys ; 152(23): 234504, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32571054

RESUMEN

The protic ionic liquid diethylmethylammonium methanesulfonate ([DEMA][OMs]) was analyzed in depth by differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, and broadband dielectric spectroscopy (BDS) under anhydrous conditions. Karl Fischer titration, NMR, and FT-IR spectra confirmed the high purity of [DEMA][OMs]. The melting point (37.7 °C) and the freezing point (14.0 °C) obtained by DSC agree well with the values determined by BDS (40.0 °C and 14.0 °C). The dc conductivity (σdc) above the melting/freezing point obeys the Vogel-Fulcher-Tammann (VFT) equation well, and thus, the proton conduction in [DEMA][OMs] is assumed to be dominated by the vehicle mechanism. In contrast, the σdc below the melting/freezing point can be fitted by the Arrhenius equation separately, and therefore, the proton conduction is most likely governed by the proton hopping mechanism. The non-negligible influence of previously reported low water content on the physicochemical properties of [DEMA][OMs] is found, indicating the importance of reducing water content as much as possible for the study of "intrinsic" properties of protic ionic liquids.

3.
Dalton Trans ; 53(25): 10618-10625, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38857028

RESUMEN

Utilizing the phase transition principle of VO2, this paper presents a tunable ultra-wideband terahertz perfect absorption device with simple structure and tunability. The proposed broadband terahertz perfect absorption device is a three-layer structure with a metal reflective layer, a silicon dioxide dielectric layer and a VO2 layer from bottom to top. It was found that the terahertz perfect absorption device's absorption could be dynamically adjusted from 1.2% to 99.9% when changing from an insulated to a metallic state. With the VO2 in the metallic state, the terahertz perfect absorption device has an absorption efficiency of more than 90% in 4.00 to 10.08 THz's ultra-broadband range and near-perfect absorption is achieved in the ranges of 4.71 THz to 5.16 THz and 7.74 THz to 8.06 THz. To explain the working principle of this terahertz perfect absorption device, this paper utilizes wave interference's principle, theory of impedance matching and electric field analysis. Compared to previously reported terahertz metamaterial devices, the vanadium dioxide device proposed in this paper is significantly optimized in terms of tunable range and absorption bandwidth. In addition, the terahertz perfect absorption device is polarization insensitive and maintains good absorptivity over a wide-angle incidence range. This tunable ultra-wideband terahertz perfect absorption device could have applications in the fields of modulation, stealth devices, and thermal emission devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA