Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Biol Chem ; 287(9): 6628-41, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22219196

RESUMEN

A loss-of-function mutation in the gene parkin causes a common neurodegenerative disease that may be caused by mitochondrial dysfunction. Glutathione S-transferase Omega (GSTO) is involved in cell defense mechanisms, but little is known about the role of GSTO in the progression of Parkinson disease. Here, we report that restoration of Drosophila GSTO1 (DmGSTO1), which is down-regulated in parkin mutants, alleviates some of the parkin pathogenic phenotypes and that the loss of DmGSTO1 function enhances parkin mutant phenotypes. We further identified the ATP synthase ß subunit as a novel in vivo target of DmGSTO1. We found that glutathionylation of the ATP synthase ß subunit is rescued by DmGSTO1 and that the expression of DmGSTO1 partially restores the activity and assembly of the mitochondrial F(1)F(0)-ATP synthase in parkin mutants. Our results suggest a novel mechanism for the protective role of DmGSTO1 in parkin mutants, through the regulation of ATP synthase activity, and provide insight into potential therapies for Parkinson disease neurodegeneration.


Asunto(s)
Proteínas de Drosophila/metabolismo , Glutatión Transferasa/metabolismo , Degeneración Nerviosa/enzimología , Trastornos Parkinsonianos/enzimología , Ubiquitina-Proteína Ligasas/genética , Animales , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster , Glutatión Transferasa/genética , Herbicidas/toxicidad , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mutagénesis Sitio-Dirigida , Degeneración Nerviosa/inducido químicamente , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Paraquat/toxicidad , Fenotipo , Transducción de Señal/fisiología , Tubulina (Proteína)/metabolismo , Respuesta de Proteína Desplegada/fisiología
2.
Biochem Biophys Res Commun ; 437(4): 615-9, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23867819

RESUMEN

Loss-of-function mutation of the PTEN-induced kinase 1 (PINK1) gene is a common cause of early-onset Parkinson's disease (PD). Glutathione S-transferase omega (GSTO) is a phase II detoxification enzyme that conjugates targets to glutathione, and has recently been implicated in parkin-associated PD. In this study, we found Drosophila GstO2 to be a novel genetic suppressor of the PINK1 loss-of-function mutant. We show that GstO2A expression is reduced in PINK1 mutants. Moreover, the upregulation of GstO2A restores muscle degeneration and dopaminergic neuron loss in PINK1 mutants. Given the previous data of a reduced expression of GstO2A and decreased glutathionylation of ATP synthase ß subunit in parkin or PINK1 mutants, these results suggest that the function of GstO2 is regulated by the PINK1/parkin pathway and that GstO2 also has a protective role in PINK1-associated PD.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación Enzimológica de la Expresión Génica , Glutatión Transferasa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Modificados Genéticamente , Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Homeostasis , Mitocondrias/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/genética
3.
IUBMB Life ; 65(4): 334-40, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23436441

RESUMEN

Drosophila melanogaster has red eyes. Scientists have been curious about the biosynthesis of the red eye pigments and have completed a number of investigations on these compounds. Scientific contributions made over the past 50 years have improved our understanding of the red eye pigments. Researchers have elucidated the chemical structures of some pigments and have successfully purified and identified the enzymes that participate in the biosynthesis of the red eye pigments. In this article, we will review the characteristics of the Drosophila red eye pigments and of the enzymes and genes involved in its biosynthetic pathway.


Asunto(s)
Drosophila melanogaster/metabolismo , Ojo/química , Pigmentos Biológicos/biosíntesis , Pteridinas/metabolismo , Animales , Ojo/metabolismo , GTP Ciclohidrolasa/química , GTP Ciclohidrolasa/metabolismo , Mutación , Pteridinas/química
4.
Biochem Biophys Res Commun ; 417(1): 335-9, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22155246

RESUMEN

Mutagenesis by transposon-mediated imprecise excision is the most extensively used technique for mutagenesis in Drosophila. Although P-element is the most widely used transposon in Drosophila to generate deletion mutants, it is limited by the insertion coldspots in the genome where P-elements are rarely found. The piggyBac transposon was developed as an alternative mutagenic vector for mutagenesis of non-P-element targeted genes in Drosophila because the piggyBac transposon can more randomly integrate into the genome. Previous studies suggested that the piggyBac transposon always excises precisely from the insertion site without initiating a deletion or leaving behind an additional footprint. This unique characteristic of the piggyBac transposon facilitates reversible gene-transfer in several studies, such as the generation of induced pluripotent stem (iPS) cells from fibroblasts. However, it also raised a potential limitation of its utility in generating deletion mutants in Drosophila. In this study, we report multiple imprecise excisions of the piggyBac transposon at the sepiapterin reductase (SR) locus in Drosophila. Through imprecise excision of the piggyBac transposon inserted in the 5'-UTR of the SR gene, we generated a hypomorphic mutant allele of the SR gene which showed markedly decreased levels of SR expression. Our finding suggests that it is possible to generate deletion mutants by piggyBac transposon-mediated imprecise excision in Drosophila. However, it also suggests a limitation of piggyBac transposon-mediated reversible gene transfer for the generation of induced pluripotent stem (iPS) cells.


Asunto(s)
Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Mutación INDEL , Eliminación de Secuencia , Oxidorreductasas de Alcohol/genética , Animales , Reparación del ADN
5.
Dev Biol ; 346(2): 247-57, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20691177

RESUMEN

Cullin-RING ubiquitin ligases (CRLs), which comprise the largest class of E3 ligases, regulate diverse cellular processes by targeting numerous proteins. Conjugation of the ubiquitin-like protein Nedd8 with Cullin activates CRLs. Cullin-associated and neddylation-dissociated 1 (Cand1) is known to negatively regulate CRL activity by sequestering unneddylated Cullin1 (Cul1) in biochemical studies. However, genetic studies of Arabidopsis have shown that Cand1 is required for optimal CRL activity. To elucidate the regulation of CRLs by Cand1, we analyzed a Cand1 mutant in Drosophila. Loss of Cand1 causes accumulation of neddylated Cullin3 (Cul3) and stabilizes the Cul3 adaptor protein HIB. In addition, the Cand1 mutation stimulates protein degradation of Cubitus interruptus (Ci), suggesting that Cul3-RING ligase activity is enhanced by the loss of Cand1. However, the loss of Cand1 fails to repress the accumulation of Ci in Nedd8(AN015) or CSN5(null) mutant clones. Although Cand1 is able to bind both Cul1 and Cul3, mutation of Cand1 suppresses only the accumulation of Cul3 induced by the dAPP-BP1 mutation defective in the neddylation pathway, and this effect is attenuated by inhibition of proteasome function. Furthermore, overexpression of Cand1 stabilizes the Cul3 protein when the neddylation pathway is partially suppressed. These data indicate that Cand1 stabilizes unneddylated Cul3 by preventing proteasomal degradation. Here, we propose that binding of Cand1 to unneddylated Cul3 causes a shift in the equilibrium away from the neddylation of Cul3 that is required for the degradation of substrate by CRLs, and protects unneddylated Cul3 from proteasomal degradation. Cand1 regulates Cul3-mediated E3 ligase activity not only by acting on the neddylation of Cul3, but also by controlling the stability of the adaptor protein and unneddylated Cul3.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Cullin/genética , Proteínas de Drosophila/genética , Factores de Transcripción/genética
6.
Dev Biol ; 330(2): 250-62, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19341724

RESUMEN

Hereditary spastic paraplegia (HSP) is an inherited neurological disorder characterized by progressive spasticity and weakness of the lower extremities. The most common early-onset form of HSP is caused by mutations in the human gene that encodes the dynamin-family GTPase Atlastin-1 (Atl-1). Recently, loss of the Drosophila ortholog of Atl-1 (Atl) has been found to induce locomotor impairments from the earliest adult stages, suggesting the developmental role of atlastin-subfamily GTPases. Here, we provide evidence that Atl is required for normal growth of muscles and synapses at the neuromuscular junction (NMJ). Atl protein is highly expressed in larval body-wall muscles. Loss-of-function mutations in the atl gene reduce the size of muscles and increase the number of synaptic boutons. Rescue of these defects is accomplished by muscular, but not neuronal expression of Atl. Loss of Atl also disrupts ER and Golgi morphogenesis in muscles and reduces the synaptic levels of the scaffold proteins Dlg and alpha-spectrin. We also provide evidence that Atl functions with the microtubule-severing protein Spastin to disassemble microtubules in muscles. Finally, we demonstrate that the microtubule-destabilizing drug vinblastine alleviates synapse and muscle defects in atl mutants. Together, our results suggest that Atl controls synapse development and ER and Golgi morphogenesis by regulating microtubule stability.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Microtúbulos , Músculos/embriología , Sinapsis , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Morfogénesis , Mutación
7.
Nature ; 424(6944): 81-4, 2003 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-12819662

RESUMEN

The many types of insect ear share a common sensory element, the chordotonal organ, in which sound-induced antennal or tympanal vibrations are transmitted to ciliated sensory neurons and transduced to receptor potentials. However, the molecular identity of the transducing ion channels in chordotonal neurons, or in any auditory system, is still unknown. Drosophila that are mutant for NOMPC, a transient receptor potential (TRP) superfamily ion channel, lack receptor potentials and currents in tactile bristles but retain most of the antennal sound-evoked response, suggesting that a different channel is the primary transducer in chordotonal organs. Here we describe the Drosophila Nanchung (Nan) protein, an ion channel subunit similar to vanilloid-receptor-related (TRPV) channels of the TRP superfamily. Nan mediates hypo-osmotically activated calcium influx and cation currents in cultured cells. It is expressed in vivo exclusively in chordotonal neurons and is localized to their sensory cilia. Antennal sound-evoked potentials are completely absent in mutants lacking Nan, showing that it is an essential component of the chordotonal mechanotransducer.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Audición/fisiología , Secuencia de Aminoácidos , Animales , Células CHO , Calcio/metabolismo , Canales de Calcio/química , Canales de Calcio/genética , Señalización del Calcio , Cricetinae , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Evolución Molecular , Eliminación de Gen , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Neuronas/metabolismo , Presión Osmótica , Técnicas de Placa-Clamp , Canales de Potencial de Receptor Transitorio
8.
Nature ; 425(6956): 415-9, 2003 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-14508493

RESUMEN

Hundreds of small RNAs of approximately 22 nucleotides, collectively named microRNAs (miRNAs), have been discovered recently in animals and plants. Although their functions are being unravelled, their mechanism of biogenesis remains poorly understood. miRNAs are transcribed as long primary transcripts (pri-miRNAs) whose maturation occurs through sequential processing events: the nuclear processing of the pri-miRNAs into stem-loop precursors of approximately 70 nucleotides (pre-miRNAs), and the cytoplasmic processing of pre-miRNAs into mature miRNAs. Dicer, a member of the RNase III superfamily of bidentate nucleases, mediates the latter step, whereas the processing enzyme for the former step is unknown. Here we identify another RNase III, human Drosha, as the core nuclease that executes the initiation step of miRNA processing in the nucleus. Immunopurified Drosha cleaved pri-miRNA to release pre-miRNA in vitro. Furthermore, RNA interference of Drosha resulted in the strong accumulation of pri-miRNA and the reduction of pre-miRNA and mature miRNA in vivo. Thus, the two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.


Asunto(s)
Núcleo Celular/enzimología , Endorribonucleasas/metabolismo , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , Secuencia de Bases , Línea Celular , Núcleo Celular/genética , Endorribonucleasas/genética , Células HeLa , Humanos , MicroARNs/genética , Interferencia de ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasa III
9.
Genetics ; 176(2): 891-903, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17409077

RESUMEN

Planar cell polarity (PCP) signaling is mediated by the serpentine receptor Frizzled (Fz) and transduced by Dishevelled (Dsh). Wingless (Wg) signaling utilizes Drosophila Frizzled 2 (DFz2) as a receptor and also requires Dsh for transducing signals to regulate cell proliferation and differentiation in many developmental contexts. Distinct pathways are activated downstream of Dsh in Wg- and Fz-signaling pathways. Recently, a number of genes, which have essential roles as downstream components of PCP signaling, have been identified in Drosophila. They include the small GTPase RhoA/Rho1, its downstream effector Drosophila rho-associated kinase (Drok), and a number of genes such as inturned (in) and fuzzy (fy), whose biochemical functions are unclear. RhoA and Drok provide a link from Fz/Dsh signaling to the modulation of actin cytoskeleton. Here we report the identification of the novel gene target of wingless (tow) by enhancer trap screening. tow expression is negatively regulated by Wg signaling in wing imaginal discs, and the balance between tow and the Drok pathway regulates wing-hair morphogenesis. A loss-of-function mutation in tow does not result in a distinct phenotype. Genetic interaction and gain-of-function studies provide evidence that Tow acts downstream of Fz/Dsh and plays a role in restricting the number of hairs that wing cells form.


Asunto(s)
Polaridad Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Nucleares/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Alas de Animales/fisiología , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Receptores Frizzled/fisiología , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/farmacología , Proteínas Proto-Oncogénicas/genética , Receptores Acoplados a Proteínas G/fisiología , Alas de Animales/citología , Proteína Wnt1 , Quinasas Asociadas a rho
10.
Biochem J ; 398(3): 451-60, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16712527

RESUMEN

The eye colour mutant sepia (se1) is defective in PDA {6-acetyl-2-amino-3,7,8,9-tetrahydro-4H-pyrimido[4,5-b]-[1,4]diazepin-4-one or pyrimidodiazepine} synthase involved in the conversion of 6-PTP (2-amino-4-oxo-6-pyruvoyl-5,6,7,8-tetrahydropteridine; also known as 6-pyruvoyltetrahydropterin) into PDA, a key intermediate in drosopterin biosynthesis. However, the identity of the gene encoding this enzyme, as well as its molecular properties, have not yet been established. Here, we identify and characterize the gene encoding PDA synthase and show that it is the structural gene for sepia. Based on previously reported information [Wiederrecht, Paton and Brown (1984) J. Biol. Chem. 259, 2195-2200; Wiederrecht and Brown (1984) J. Biol. Chem. 259, 14121-14127; Andres (1945) Drosoph. Inf. Serv. 19, 45; Ingham, Pinchin, Howard and Ish-Horowicz (1985) Genetics 111, 463-486; Howard, Ingham and Rushlow (1988) Genes Dev. 2, 1037-1046], we isolated five candidate genes predicted to encode GSTs (glutathione S-transferases) from the presumed sepia locus (region 66D5 on chromosome 3L). All cloned and expressed candidates exhibited relatively high thiol transferase and dehydroascorbate reductase activities and low activity towards 1-chloro-2,4-dinitrobenzene, characteristic of Omega class GSTs, whereas only CG6781 catalysed the synthesis of PDA in vitro. The molecular mass of recombinant CG6781 was estimated to be 28 kDa by SDS/PAGE and 56 kDa by gel filtration, indicating that it is a homodimer under native conditions. Sequencing of the genomic region spanning CG6781 revealed that the se1 allele has a frameshift mutation from 'AAGAA' to 'GTG' at nt 190-194, and that this generates a premature stop codon. Expression of the CG6781 open reading frame in an se1 background rescued the eye colour defect as well as PDA synthase activity and drosopterins content. The extent of rescue was dependent on the dosage of transgenic CG6781. In conclusion, we have discovered a new catalytic activity for an Omega class GST and that CG6781 is the structural gene for sepia which encodes PDA synthase.


Asunto(s)
Glutatión Transferasa/clasificación , Cetona Oxidorreductasas/genética , Cetona Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Clonación Molecular , Drosophila melanogaster/genética , Regulación Enzimológica de la Expresión Génica , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Pteridinas/química , Pteridinas/metabolismo
11.
Insect Sci ; 24(1): 27-34, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26332639

RESUMEN

NEDD8 conjugation of Cullin has an important role in ubiquitin-mediated protein degradation. The COP9 signalosome, of which CSN5 is the major catalytic subunit, is a major Cullin deneddylase. Another deneddylase, Deneddylase 1, has also been shown to process the Nedd8 precursor. In Drosophila, the DEN1 mutants do not have increased levels of Cullin neddylation, but instead show a significant decrease in neddylated Cullin. This characteristic decrease in neddylated Cullins in the DEN1null background can be rescued by UAS-dDEN1WT overexpression but not by overexpression of mature NEDD8, indicating that this phenotype is distinct from the NEDD8-processing function of DEN1. We examined the role of DEN1-CSN interaction in regulating Cullin neddylation. Overexpression of DEN1 in a CSN5hypo background slightly reduced unneddylated Cullin levels. The CSN5, DEN1 double mutation partially rescues the premature lethality associated with the CSN5 single mutation. These results suggest that DEN1 regulates Cullin neddylation by suppressing CSN deneddylase activity.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endopeptidasas/metabolismo , Ubiquitinas/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endopeptidasas/genética , Mutagénesis Sitio-Dirigida , Mutación/genética , Procesamiento Proteico-Postraduccional , Ubiquitinas/genética
12.
Mech Dev ; 110(1-2): 61-70, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11744369

RESUMEN

In Drosophila oogenesis, follicle cells derived from somatic tissue surround the oocyte and play key roles in generating properly polarized oocytes. During the later steps of oogenesis, follicle cells are involved in secretion of proteins that make the eggshell, an essential protective layer for the oocyte. Although studies on the signaling processes to make polarized oocytes have been progressed very far, studies on the mechanisms for eggshell formation is not clear yet. To elucidate the underlying mechanism in eggshell formation, we used a differential display screen to isolate genes that are specifically expressed during the later stages of oogenesis, and isolated a novel gene, Femcoat. Femcoat encodes a putative chorion membrane protein that contains many highly charged residues and has a putative signal peptide. Femcoat is expressed specifically in the follicle cells with a punctate staining pattern typical of secreted proteins, and becomes cross-linked heavily at the final steps of oogenesis. To identify the developmental role of Femcoat in eggshell formation, we performed an inducible double stranded RNA mediated interference (dsRNAi) method to specifically reduce Femcoat expression during oogenesis in adult flies. Electron microscopy analysis of egg chambers from these flies showed defects in chorion formation. These pieces of evidence demonstrated that Femcoat is necessary for eggshell formation, especially during chorion synthesis. Our results demonstrate that inducible dsRNAi analysis can be effective in determining the developmental function of novel genes.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/genética , Proteínas del Huevo/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Corion/embriología , ADN Complementario/genética , Proteínas de Drosophila/fisiología , Proteínas del Huevo/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Datos de Secuencia Molecular , Oogénesis/genética , Oogénesis/fisiología , ARN sin Sentido/genética , ARN Bicatenario/genética
13.
FASEB J ; 16(14): 1943-5, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12368233

RESUMEN

Telomerase activity is closely correlated with cellular proliferative activity in human tissues. Human cells with high proliferative potential, such as tumor cells or stem cells, exhibit telomerase activity, whereas most normal human somatic cells do not. Telomerase activity is tightly regulated by the expression of its catalytic subunit human telomerase reverse transcriptase (hTERT). Through an expression cloning approach, we identified E2F-1 as a repressor of the hTERT gene in human tumor cells. Ectopic expression of E2F-1 repressed hTERT promoter activity by inhibiting Sp1 activation of the hTERT promoter. In contrast to the repressor function of E2F-1 in human tumor cells, we demonstrated that E2F-1 is an activator of the hTERT gene in normal human somatic cells. Ectopically expressed E2F-1 activated the hTERT promoter through a noncanonical DNA binding site. E2F-1, E2F-2, and E2F-3 (but not E2F-4 and E2F-5) repressed hTERT promoter activity in human tumor cells, whereas they activated it in normal somatic cells. These contrasting effects of E2F transcription factors on the hTERT promoter could underlie the paradoxical biological activities of E2F, which can both promote and inhibit cellular proliferation and tumorigenesis.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Neoplasias/enzimología , Proteínas Represoras/fisiología , Telomerasa/genética , Transactivadores/fisiología , Factores de Transcripción/fisiología , Sitios de Unión , Línea Celular , Clonación Molecular , Factores de Transcripción E2F , Factor de Transcripción E2F1 , Factor de Transcripción E2F2 , Factor de Transcripción E2F3 , Factor de Transcripción E2F4 , Factor de Transcripción E2F5 , Regulación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Modelos Genéticos , Neoplasias/genética , Regiones Promotoras Genéticas , Isoformas de Proteínas/fisiología , Factor de Transcripción Sp1/fisiología , Telomerasa/biosíntesis , Factores de Transcripción/genética , Células Tumorales Cultivadas
14.
Gene ; 568(2): 203-10, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26024591

RESUMEN

Glutathione transferase omega (GSTO) belongs to a recently identified family of glutathione transferase (GST) and presents several known functions. In Drosophila, despite the high sequence identity among the four GstO isoforms, they present different physiological functions. Herein, we showed that GstO1, which is one of the Drosophila GstOs, is highly expressed in adult heads. We determined the three-dimensional structure of GstO1, by homology modeling. Furthermore, we show that GstO1 loss-of-function mutant flies display reduced survival than the control flies when subjected to H2O2 treatment. Interestingly, the neuronal-specific expression of GstO1 in a GstO1 loss-of-function mutant background rescued H2O2-induced toxicity. We further showed that GstO1 inhibits H2O2-mediated activation of the mitogen-activated protein kinase (MAPK) pathway. Collectively, our findings provide valuable new insights into the tissue-specific protective mechanisms of Drosophila GstOs during oxidative stress.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/enzimología , Glutatión Transferasa/fisiología , Peróxido de Hidrógeno/farmacología , Oxidantes/farmacología , Secuencia de Aminoácidos , Animales , Apoptosis , Encéfalo/citología , Encéfalo/enzimología , Sistema de Señalización de MAP Quinasas , Masculino , Datos de Secuencia Molecular , Neuronas/enzimología , Especificidad de Órganos , Estrés Oxidativo
16.
J Biochem Mol Biol ; 35(3): 255-61, 2002 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-12297008

RESUMEN

GTP cyclohydrolase I (E.C. 3.5.4.16) is a homodecameric protein that catalyzes the conversion of GTP to 7,8- dihydroneopterin triphosphate (H(2)NTP), the initial step in the biosynthesis of pteridines. It was proposed that the enzyme complex could be composed of a dimer of two pentamers, or a pentamer of tightly associated dimers; then the active site of the enzyme was located at the interface of three monomers (Nar et al. 1995a, b). Using mutant enzymes that were made by site-directed mutagenesis, we showed that a decamer of GTP cyclohydrolase I should be composed of a pentamer of five dimers, and that the active site is located between dimers, as analyzed by a series of size exclusion chromatography and the reconstitution experiment. We also show that the residues Lys 136, Arg139, and Glu152 are of particular importance for the oligomerization of the enzyme complex from five dimers to a decamer.


Asunto(s)
Escherichia coli/enzimología , GTP Ciclohidrolasa/química , Modelos Moleculares , Conformación Proteica , Cristalografía por Rayos X , GTP Ciclohidrolasa/metabolismo , Guanosina Trifosfato/metabolismo , Mutagénesis Sitio-Dirigida , Pteridinas/metabolismo
17.
J Biol Chem ; 284(35): 23426-35, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19567870

RESUMEN

Dihydropterin deaminase, which catalyzes the conversion of 7,8-dihydropterin to 7,8-dihydrolumazine, was purified 5850-fold to apparent homogeneity from Drosophila melanogaster. Its molecular mass was estimated to be 48 kDa by gel filtration and SDS-PAGE, indicating that it is a monomer under native conditions. The pI value, temperature, and optimal pH of the enzyme were 5.5, 40 degrees C, and 7.5, respectively. Interestingly the enzyme had much higher activity for guanine than for 7,8-dihydropterin. The specificity constant (k(cat)/K(m)) for guanine (8.6 x 10(6) m(-1).s(-1)) was 860-fold higher than that for 7,8-dihydropterin (1.0 x 10(4) m(-1).s(-1)). The structural gene of the enzyme was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis as CG18143, located at region 82A1 on chromosome 3R. The cloned and expressed CG18143 exhibited both 7,8-dihydropterin and guanine deaminase activities. Flies with mutations in CG18143, SUPor-P/Df(3R)A321R1 transheterozygotes, had severely decreased activities in both deaminases compared with the wild type. Among several red eye pigments, the level of aurodrosopterin was specifically decreased in the mutant, and the amount of xanthine and uric acid also decreased considerably to 76 and 59% of the amounts in the wild type, respectively. In conclusion, dihydropterin deaminase encoded by CG18143 plays a role in the biosynthesis of aurodrosopterin by providing one of its precursors, 7,8-dihydrolumazine, from 7,8-dihydropterin. Dihydropterin deaminase also functions as guanine deaminase, an important enzyme for purine metabolism.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Guanina Desaminasa/metabolismo , Pigmentos Biológicos/biosíntesis , Pterinas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/aislamiento & purificación , Drosophila melanogaster/química , Drosophila melanogaster/genética , Electroforesis en Gel de Poliacrilamida , Color del Ojo , Femenino , Guanina Desaminasa/química , Guanina Desaminasa/genética , Guanina Desaminasa/aislamiento & purificación , Cinética , Masculino , Datos de Secuencia Molecular , Alineación de Secuencia , Especificidad por Sustrato
18.
J Cell Sci ; 121(Pt 19): 3218-23, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18782863

RESUMEN

The ubiquitin-like protein Nedd8/Rub1 covalently modifies and activates cullin ubiquitin ligases. However, the repertoire of Nedd8-modified proteins and the regulation of protein neddylation status are not clear. The cysteine protease DEN1/NEDP1 specifically processes the Nedd8 precursor and has been suggested to deconjugate Nedd8 from cullin proteins. By characterizing the Drosophila DEN1 protein and DEN1 null (DEN1(null)) mutants, we provide in vitro and in vivo evidence that DEN1, in addition to processing Nedd8, deneddylates many cellular proteins. Although purified DEN1 protein efficiently deneddylates the Nedd8-conjugated cullin proteins Cul1 and Cul3, neddylated Cul1 and Cul3 protein levels are not enhanced in DEN1(null). Strikingly, many cellular proteins are highly neddylated in DEN1 mutants and are deneddylated by purified DEN1 protein. DEN1 deneddylation activity is distinct from that of the cullin-deneddylating CSN. Genetic analyses indicate that a balance between neddylation and deneddylation maintained by DEN1 is crucial for animal viability.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endopeptidasas/metabolismo , Ubiquitinas/metabolismo , Animales , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Mutación/genética , Proteína NEDD8 , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/metabolismo
19.
IUBMB Life ; 59(12): 781-90, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18085478

RESUMEN

A P element enhancer trap screen was conducted to identify genes involved in dorsal-ventral boundary formation in Drosophila. The son of Notch (son) gene was identified by the son(2205) enhancer trap insertion, which is a partial loss-of-function mutation. Based on son(2205) mutant phenotypes and genetic interactions with Notch and wingless mutations, we conclude that son participates in wing development, and functions in the Notch signaling pathway at the dorsal-ventral boundary in the wing. Notch signaling pathway components activate son enhancer trap expression in wing cells. son enhancer trap expression is regulated positively by wingless, and negatively by cut in boundary cells. Ectopic Son protein induces wingless and cut expression in wing discs. We hypothesize that there is positive feedback regulation of son by wingless, and negative regulation by cut at the dorsal-ventral boundary during wing development.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Genes de Insecto , Alas de Animales/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Tipificación del Cuerpo/genética , Cartilla de ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción Winged-Helix/genética , Factores de Transcripción Winged-Helix/metabolismo , Proteína Wnt1
20.
Development ; 134(9): 1767-77, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17409115

RESUMEN

Axon extension and guidance require a coordinated assembly of F-actin and microtubules as well as regulated translation. The molecular basis of how the translation of mRNAs encoding guidance proteins could be closely tied to the pace of cytoskeletal assembly is poorly understood. Previous studies have shown that the F-actin-microtubule crosslinker Short stop (Shot) is required for motor and sensory axon extension in the Drosophila embryo. Here, we provide biochemical and genetic evidence that Shot functions with a novel translation inhibitor, Krasavietz (Kra, Exba), to steer longitudinally directed CNS axons away from the midline. Kra binds directly to the C-terminus of Shot, and this interaction is required for the activity of Shot to support midline axon repulsion. shot and kra mutations lead to weak robo-like phenotypes, and synergistically affect midline avoidance of CNS axons. We also show that shot and kra dominantly enhance the frequency of midline crossovers in embryos heterozygous for slit or robo, and that in kra mutant embryos, some Robo-positive axons ectopically cross the midline that normally expresses the repellent Slit. Finally, we demonstrate that Kra also interacts with the translation initiation factor eIF2beta and inhibits translation in vitro. Together, these data suggest that Kra-mediated translational regulation plays important roles in midline axon repulsion and that Shot functions as a direct physical link between translational regulation and cytoskeleton reorganization.


Asunto(s)
Axones/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Factor 5 Eucariótico de Iniciación/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Secuencia de Aminoácidos , Animales , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/virología , Drosophila/metabolismo , Proteínas de Drosophila/química , Embrión no Mamífero/metabolismo , Factor 5 Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Proteínas de Microfilamentos/química , Microtúbulos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Receptores Inmunológicos/metabolismo , Proteínas Roundabout
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA