RESUMEN
BACKGROUND: Qualified malaria diagnosis competency has contributed to the great achievement of malaria elimination in China. After eliminating malaria, it is still critical to the prevention of re-establishment of malaria transmission in China. This study was aimed to assess the malaria detection competency at national and provincial levels in China at the beginning of malaria post-elimination phase. METHODS: In the present study, different competency assessment activities on the laboratory malaria diagnosis were carried out for national and provincial malaria diagnostic laboratories based on the WHO scoring schedules, including malaria microscopy or nucleic acid amplification tests (NAAT), at the beginning of malaria post-elimination phase (2021-2022) in China. RESULTS: A total of 60 slides for malaria microscopy and 10 specimen for NAAT were included into the WHO External Quality Assessments of malaria parasite qualitative detection and species identification, and the scoring rate was 96.6% (microscopy: 171/177) and 85.0% (NAAT: 17/20), respectively. Moreover, 124 samples were included into the national NAAT quality assessment, and an accuracy of 87.9% (109/124) was found without significance among reference laboratories and non-reference laboratories. CONCLUSIONS: The findings suggest that there is still a need for sustained strengthening of malaria detection competency, particularly in the areas of parasite counting and detection of low-density parasitemia, to ensure prompt detection of the sources of infection and accurate identification of Plasmodium species, and contribute to case management and focus disposal, thereby effectively preventing the malaria re-establishment.
Asunto(s)
Malaria , Plasmodium , Humanos , Malaria/prevención & control , Técnicas de Laboratorio Clínico , Laboratorios , ChinaRESUMEN
BACKGROUND: Blastocystis is one of the important zoonotic parasites which can infect humans and various animals worldwide and has become a growing global public health concern. The study aims to obtain the data of Blastocystis infection and the information of the genetic characteristic. METHODS: In the present study, 489 fecal samples were collected from diarrhea outpatients in Ningbo, Zhejiang province, and were examined the presence of Blastocystis by polymerase chain reaction combined with sequencing. RESULTS: A total of 10 samples (2.04%, 10/489) were positive for Blastocystis with no significant difference among sex and age groups, respectively. Eight samples were successfully sequenced, and five zoonotic ST3 and three zoonotic ST1 with two new sequences were identified. CONCLUSIONS: We first demonstrated the occurrence of Blastocystis infection in diarrhea outpatients in Ningbo, with two zoonotic subtypes (ST1 and ST3) and two new sequences being characterized. Meanwhile, mixed infection of Blastocystis and E. bieneusi was found which indicates the importance of investigation of multiple parasites. Finally, more extensive studies will be needed to better understand the transmission of Blastocystis at human-animal-environment interface and provide evidence for the development of one health strategies for the prevention and control of such diseases.
Asunto(s)
Infecciones por Blastocystis , Blastocystis , Animales , Humanos , Infecciones por Blastocystis/epidemiología , Infecciones por Blastocystis/parasitología , Pacientes Ambulatorios , Variación Genética , Blastocystis/genética , China/epidemiología , Heces/parasitología , Diarrea/epidemiología , Prevalencia , FilogeniaRESUMEN
Enterocytozoon bieneusi, Cryptosporidium spp. and Cyclospora cayetanensis are three important zoonotic pathogens which were a major cause of foodborne or waterborne intestinal diseases in humans and animals. However, very little data about occurrence and genotypes of the three parasites in Ningbo in the south wing of the Yangtze River Delta, China, which is important for a tourist city. In the present study, molecular characterization of E. bieneusi, C. cayetanensis and Cryptosporidium spp. in fecal samples from 489 diarrheal outpatients were carried out. As a result, a total of 35 (7.16%, 35/489) and three (0.61%, 3/489) samples were positive for E. bieneusi and C. cayetanensis respectively. No Cryptosporidium-positive sample or mixed-infections were detected. Four known E. bieneusi genotypes (Type IV, D, I and CHN4) and 8 novel genotypes (NBH1-NBH8) were identified with type IV was the dominant genotype (n = 14), followed by genotypes D (n = 5), NBH8 (n = 5) and NBH7 (n = 3). The remaining genotypes were found in one sample each, and these genotypes were belonged to the previously described high-potential zoonotic group 1. One novel sequence named NBC315, and the other two sequences (NBC30 and NBC370) identical with the reported sequence were detected. Therefore, the existence and importance of zoonotic potential of E. bieneusi and C. cayetanensis in diarrheal outpatients in Ningbo indicates the public health threats, and more investigations should be carried out in human populations, animals and other environmental sources from the One Health perspective.
Asunto(s)
Criptosporidiosis , Cyclospora , Enterocytozoon , Animales , Humanos , Enterocytozoon/genética , Cyclospora/genética , Pacientes Ambulatorios , China/epidemiología , Genotipo , Diarrea/epidemiología , Heces/parasitología , Filogenia , Criptosporidiosis/epidemiología , Criptosporidiosis/parasitología , PrevalenciaRESUMEN
There has been a significant reduction in malaria morbidity and mortality worldwide from 2000 to 2019. However, the incidence and mortality increased again in 2020 due to the disruption to services during the COVID-19 pandemic. Surveillance to reduce the burden of malaria, eliminate the disease and prevent its retransmission is, therefore, crucial. The 1-3-7 approach proposed by China has played an important role in eliminating malaria, which has been internationally popularized and adopted in some countries to help eliminate malaria. This review summarizes the experience and lessons of 1-3-7 approach in China and its application in other malaria-endemic countries, so as to provide references for its role in eliminating malaria and preventing retransmission. This approach needs to be tailored and adapted according to the region condition, considering the completion, timeliness and limitation of case-based reactive surveillance and response. It is very important to popularize malaria knowledge, train staff, improve the capacity of health centres and monitor high-risk groups to improve the performance in eliminating settings. After all, remaining vigilance in detecting malaria cases and optimizing surveillance and response systems are critical to achieving and sustaining malaria elimination.
Asunto(s)
COVID-19 , Malaria , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , China/epidemiología , Instituciones de Salud , Malaria/epidemiología , Malaria/prevención & controlRESUMEN
Recent discoveries of reversible N6-methyladenosine (m6A) methylation on messenger RNA (mRNA) and mapping of m6A methylomes in many species have revealed potential regulatory functions of this RNA modification by m6A players-writers, readers, and erasers. Here, we first profile transcriptome-wide m6A in female and male Anopheles sinensis and reveal that m6A is also a highly conserved modification of mRNA in mosquitoes. Distinct from mammals and yeast but similar to Arabidopsis thaliana, m6A in An. sinensis is enriched not only around the stop codon and within 3'-untranslated regions but also around the start codon and 5'-UTR. Gene ontology analysis indicates the unique distribution pattern of m6A in An. sinensis is associated with mosquito sex-specific pathways such as tRNA wobble uridine modification and phospholipid-binding in females, and peptidoglycan catabolic process, exosome and signal recognition particle, endoplasmic reticulum targeting, and RNA helicase activity in males. The positive correlation between m6A deposition and mRNA abundance indicates that m6A can play a role in regulating gene expression in mosquitoes. Furthermore, many spermatogenesis-associated genes, especially those related to mature sperm flagellum formation, are positively modulated by m6A methylation. A transcriptional regulatory network of m6A in An. sinensis is first profiled in the present study, especially in spermatogenesis, which may provide a new clue for the control of this disease-transmitting vector.
Asunto(s)
Anopheles , Arabidopsis , Regiones no Traducidas 3' , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Animales , Anopheles/genética , Anopheles/metabolismo , Arabidopsis/genética , Femenino , Masculino , Mamíferos/metabolismo , Mosquitos Vectores , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cola del Espermatozoide/metabolismo , TranscriptomaRESUMEN
Introduction: Qualified microscopy competency is a key indicator for certification of malaria elimination. To better prepare the country certification and identify the priorities that need improvement to prevent malaria reestablishment, microscopy competency at different levels were assessed in subnational verification of malaria elimination in China. Methodology. Microscopist representatives from centers for disease control and prevention (CDC)/institutes of parasitic diseases (IPD) and medical institutes for malaria diagnosis at the provincial and county levels in the subnational verification were analyzed. Specifically, five provincial microscopist representatives and ten county-level representatives were assessed in each of previously endemic provinces on qualitative identification (Plasmodium positive or negative) and Plasmodium species identification using standard slides from the National Malaria Diagnosis Reference Laboratory. Results: A total of 100 provincial-level representatives (60 from 42 CDCs/IPDs and 40 from 34 medical institutes) and 200 county-level representatives (61 from 41 CDCs and 139 from 118 medical institutes) were included. The qualitative accuracy was higher than 90% each (P = 0.137), but slides with low parasite density were easy to be misdiagnosed as negative. Furthermore, the accuracy of species identification was 80.0% and 83.6% in medical institutes and centers for disease control and prevention (CDCs) at the provincial level (P = 0.407) with relatively high misdiagnosis of P. vivax as P. ovale in the latter (16.2%) and 82.0% and 85.0% in medical institutes and CDCs at the county level (P = 0.330) for the identification of P. falciparum and non-P. falciparum with higher false-negative in medical institutions (P < 0.001). Conclusions: In conclusion, competent microscopy in subnational verification supported the quality in eliminating malaria in China, while the accurate identification of malaria parasites, especially slides with low parasite density still need to be improved through continuous diagnostic platform construction, continuous technological innovation, and targeted training to prevent reestablishment of malaria transmission.
RESUMEN
Cryptosporidium spp. and Enterocytozoon bieneusi are common and important enteric parasites that can infect humans and animals, causing diarrhoea and systemic diseases. The objectives of the present study were to examine the prevalence and genetic variations of Cryptosporidium and E. bieneusi in pigs transferred from northeastern China to Ningbo city in Zhejiang Province. Cryptosporidium spp. was detected in 0.9% (2/216) of these samples and belonged to the zoonotic species Cryptosporidium parvum. A high E. bieneusi infection rate (25.0%, 54/216) was observed in this study, with 7 possible novel ITS genotypes (JLNB-1 to JLNB-7) and 10 known genotypes (EbpA, CM11, H, CM6, pigEBITS1, EbpC, CS-4, pigEBITS5, CHS5, and Henan-â £) identified, and zoonotic EbpA was the dominant genotype. Genotypes H and pigEBITS1 were reported for the first time in pigs in China. Phylogenetic analysis indicated that all the genotypes found in these samples belonged to zoonotic group 1. These findings indicated the potential threat of Cryptosporidium and E. bieneusi to humans or the environment during cross-regional transportation. An effective management control system should be built to avoid parasitic transmission as well as other animal diseases while travelling across different regions. In further studies, attention should be given to the transmission routes and the role of pigs as a potential source of human Cryptosporidium and E. bieneusi infections in China.
Asunto(s)
Criptosporidiosis , Cryptosporidium , Enterocytozoon , Microsporidiosis , Animales , China/epidemiología , Criptosporidiosis/epidemiología , Cryptosporidium/genética , Enterocytozoon/genética , Heces , Genotipo , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Filogenia , Prevalencia , Porcinos , ZoonosisRESUMEN
Giardia duodenalis is a common zoonotic intestinal pathogen. It has been increasingly reported in humans and animals; however, genotyping information for G. duodenalis in captive animals is still limited. This study was conducted to assess the prevalence and multilocus genotyping of G. duodenalis in captive animals in zoological gardens in Shanghai, China. A total of 678 fresh fecal samples were randomly collected from captive animals including non-human primates (NHPs) (n = 190), herbivores (n = 190), carnivores (n = 151), birds (n = 138) and reptiles (n = 9) in a zoo and were examined for the presence of G. duodenalis using nested polymerase chain reaction (nested PCR). All G. duodenalis positive samples were assayed with PCR followed by sequencing at ß-giardin (bg), glutamate dehydrogenase (gdh) and triose phosphate isomerase (tpi) genes. In this study, 42 specimens (6.2%) were tested G. duodenalis-positive of the 678 fecal samples examined based on a single locus. A total of 30 (4.4%), 30 (4.4%) and 22 (3.2%) specimens were successfully amplified and sequenced at gdh, tpi and bg loci, respectively. Assemblages A and B were identified with assemblage B dominating in NHPs. Sequence analysis demonstrated that one, two and five new isolates were identified at bg, gdh and tpi loci. DNA sequences and new assemblage-subtypes of zoonotic G. duodenalis assemblages A and B were identified in the current study. Our data indicate the occurrence and molecular diversity of G. duodenalis and the potential zoonotic transmission in captive animals in China.
Asunto(s)
Animales de Zoológico/parasitología , Giardia lamblia/clasificación , Giardiasis/veterinaria , Zoonosis/parasitología , Animales , Secuencia de Bases , China/epidemiología , ADN Protozoario/química , Heces/parasitología , Técnicas de Genotipaje/veterinaria , Giardia lamblia/genética , Giardia lamblia/aislamiento & purificación , Giardiasis/epidemiología , Giardiasis/parasitología , Giardiasis/transmisión , Prevalencia , Alineación de Secuencia/veterinaria , Zoonosis/epidemiología , Zoonosis/transmisiónRESUMEN
BACKGROUND: Echinococcosis is a zoonotic parasitic disease causing serious health problems in both humans and animals in different endemic regions across the world. There are two different forms of human echinococcosis: Cystic Echinococcosis (CE) and Alveolar Echinococcosis (AE). CE is caused by the larval stage of Echinococcus granulosus sensu lato and AE by the larval stage of Echinococcus multilocularis. Geographically, CE is universally distributed, while AE is prevalent in the northern hemisphere. Although the disease is endemic in neighboring countries (China, Iran and India) of Pakistan, there are limited reports from that country. Besides, there are no comprehensive data on the genotyping of Echinococcus species in humans based on sequence analysis. This study aimed to detect the presence of human CE and to identify Echinococcus spp. in human isolates through genetic characterization of hydatid cysts in the Punjab Province of Pakistan. METHODS: Genetic analysis was performed on 38 human hydatid cyst samples collected from patients with echinococcosis using mitochondrial cytochrome c oxidase subunit 1 (cox1), cytochrome b (cytb) and NADH subunit 1 (nad1). Patient data including age, epidemiological history, sex, and location were obtained from hospital records. RESULTS: According to the sequence analysis we detected E. granulosus sensu stricto (n = 35), E. canadensis (G6/G7) (n = 2), and E. multilocularis (n = 1). Thus, the majority of the patients (92.1%, 35/38) were infected with E. granulosus s.s. This is the first molecular confirmation of E. canadensis (G6/G7) and E. multilocularis in human subjects from Pakistan. CONCLUSIONS: These findings suggested that E. granulosus s.s. is the dominant species in humans in Pakistan. In addition, E. canadensis (G6/G7) and E. multilocularis are circulating in the country. Further studies are required to explore the genetic diversity in both humans and livestock.
Asunto(s)
Equinococosis/epidemiología , Echinococcus granulosus/genética , Echinococcus multilocularis/genética , Análisis de Secuencia/métodos , Zoonosis/epidemiología , Adolescente , Adulto , Anciano , Animales , Niño , Preescolar , Ciclooxigenasa 1/genética , Citocromos b/genética , Equinococosis/parasitología , Echinococcus granulosus/aislamiento & purificación , Echinococcus multilocularis/aislamiento & purificación , Complejo I de Transporte de Electrón/genética , Femenino , Genotipo , Humanos , Ganado/parasitología , Masculino , Persona de Mediana Edad , Pakistán/epidemiología , Filogenia , Adulto Joven , Zoonosis/parasitologíaRESUMEN
BACKGROUND: Cryptosporidium is a genus of common intestinal protozoa, members of which cause diarrhea in a wide variety of hosts. Previous studies on Cryptosporidium in China have mainly focused on diarrhea sufferers, children, and immunodeficient individuals such as HIV/AIDS patients. However, the epidemiological characteristics of Cryptosporidium in the population in rural areas remain unclear. Herein, we investigated the prevalence of, and risk factors for, Cryptosporidium in rural areas of Binyang County, Guangxi Zhuang Autonomous Region, China, and genetically characterized the Cryptosporidium isolates we obtained. METHODS: From August to December 2016, two villages in Binyang County, Guangxi, were sampled using a random cluster sampling method. Fresh fecal samples were collected from all eligible residents (residence time > 6 months). Molecular characterization of Cryptosporidium was carried out based on its SSU rRNA, gp60, actin and hsp70 gene sequences. Fisher's exact test were conducted to assess the risk factors for Cryptosporidium infection. RESULTS: A total of 400 fecal samples were collected from 195 males (48.8%) and 205 females (51.2%). Two samples (0.5%) were positive for Cryptosporidium and were identified as C. viatorum and C. occultus respectively. Moreover, a new C. viatorum subtype XVaA3h was identified based on the sequence of the gp 60 gene. CONCLUSIONS: To our knowledge, this is the first report of C. viatorum and C. occultus infections in humans in China and of C. viatorum subtype XVaA3h. The findings provide important information on the prevalence of Cryptosporidium in the Chinese population, and expand the range of Cryptosporidium species known to infect people in China.
Asunto(s)
Secuencia de Bases/genética , Criptosporidiosis/epidemiología , Cryptosporidium/clasificación , Cryptosporidium/genética , ADN Protozoario/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Niño , Preescolar , China/epidemiología , Estudios Transversales , Criptosporidiosis/parasitología , Cryptosporidium/aislamiento & purificación , Diarrea/parasitología , Heces/parasitología , Femenino , Genotipo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Filogenia , Prevalencia , Factores de Riesgo , Encuestas y Cuestionarios , Adulto JovenRESUMEN
Cryptosporidium, a protozoan parasite that infects the gastrointestinal epithelium and other mucosal surfaces in humans and animals, is an important opportunistic pathogen in AIDS patients and one of the most common enteric pathogens affecting young children in developing regions. This parasite is referred to as a "minimally invasive" mucosal pathogen, and epithelial cells play a central role in activating and orchestrating host immune responses. We previously demonstrated that Cryptosporidium parvum infection stimulates host epithelial cells to release exosomes, and these released exosomes shuttle several antimicrobial peptides to carry out anti-C. parvum activity. In this study, we detected the upregulation of inflammatory genes in the liver and spleen following C. parvum intestinal infection in neonatal mice. Interestingly, exosomes released from intestinal epithelial cells following C. parvum infection could activate the nuclear factor kappa B signaling pathway and trigger inflammatory gene transcription in isolated primary splenocytes. Several epithelial cell-derived proteins and a subset of parasite RNAs were detected in the exosomes released from C. parvum-infected intestinal epithelial cells. Shuttling of these effector molecules, including the high mobility group box 1 protein, was involved in the induction of inflammatory responses in splenocytes induced by the exosomes released from infected cells. Our data indicate that exosomes released from intestinal epithelial cells upon C. parvum infection can activate immune cells by shuttling various effector molecules, a process that may be relevant to host systemic responses to Cryptosporidium infection.
Asunto(s)
Criptosporidiosis/inmunología , Criptosporidiosis/parasitología , Cryptosporidium parvum/fisiología , Células Epiteliales/inmunología , Exosomas/inmunología , Intestinos/inmunología , Bazo/citología , Animales , Criptosporidiosis/genética , Células Epiteliales/parasitología , Exosomas/genética , Femenino , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/inmunología , Humanos , Intestinos/parasitología , Hígado/inmunología , Hígado/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/inmunología , Bazo/inmunología , Bazo/parasitologíaRESUMEN
BACKGROUND: In order to meet the requirement of malaria elimination (ME), three courses of the External Competency Assessment of Malaria Microscopists (ECAMM) were conducted during 2017-2018 in China by facilitators designated by the World Health Organization (WHO-ECAMM). A training course with a model copied from the WHO-ECAMM course was also held a week ahead of ECAMM in March 2018. Thirty-six participants completed these courses and obtained different results. METHODS: The slide structures, agendas, score calculations, and the levels of certifications of the four courses strictly adhered to the WHO guidelines. All the data were collected in Excel 2016 and analysed in Graphpad Prism5 or SPSS 23. Significant differences were evaluated in Graphpad Prism5 by two-tailed paired t tests between the pre-assessment and final-assessment for each of the four courses, as well as one-way ANOVAs with Kruskal-Wallis tests and Dunn's post hoc tests among the final assessments of the four courses. Correlations between participants' competency results and their ages, years working on malaria, and numbers of malaria cases reported in their provinces were evaluated by bivariate correlations (two-tailed) and linear regression (excluding cases pairwise) in SPSS 23. The Pearson correlation coefficients (r values), P values (two tailed), adjusted R square (Adjusted R2), standardized coefficients (ß) and Sig. P values were recorded. The percentages of participants who gave the right answer to each slide (PPS) in the final assessments of the three WHO-ECAMM courses were calculated. Correlation analysis between PPS and parasitaemia (100-2000 parasites/µL) of Plasmodium falciparum slides used in species identification and parasite counting, were also evaluated via bivariate correlations (two-tailed) tests. RESULTS: Among the 36 participants, 16 participants were certificated as Level 1 (two from NRL), 10 were certified as Level 2 (one from NRL). Within the same course, participants had improved their average scores from pre-assessments to final assessments. The numbers of malaria cases reported in participants' provinces were strongly correlated to their species identification (SI) scores; r = 0.45, P = 0.040, n = 21; r = 0.57, P = 0.001, n = 32; r = 0.56, P = 0.007). The parasitaemia of P. falciparum within 100-2000 parasites/µL was correlated significantly (r = 0.44, P = 0.008, n = 36) with the PPS of all counting slides but not with slides for identification (r = - 0.018, P = 0.93, n = 30). CONCLUSIONS: The analysis and comparison of participants' competency results not only verified that the model of the WHO-ECAMM course had strong power in improving and assessing microscopists' competencies but also reflected the correlation between decreased numbers of indigenous malaria cases and microscopists' competencies in certain areas in China.
Asunto(s)
Competencia Clínica/estadística & datos numéricos , Malaria/diagnóstico , Microscopía , Plasmodium/aislamiento & purificación , China , Malaria/parasitologíaRESUMEN
Giardia duodenalis is a common intestinal parasite in humans and other mammals, and it causes major public and veterinary health problems worldwide. China is a major pig-raising country, and studies on Giardia in pigs have important public health significance. The present study was conducted to investigate the prevalence of Giardia and assess its genetic characterization. A total of 93 samples were collected from two farms in Shanghai. The presence of Giardia was determined using PCR and sequence analysis of glutamate dehydrogenase, beta-giardin and triose phosphate isomerase genes. The average prevalence of G. duodenalis infection was 26.88% (25/93) in the pigs, with 28.13% (18/64) in farm 1 vs 24.14% (7/29) in farm 2. All the PCR-positive products were successfully sequenced, and assemblage E was more prevalent. Zoonotic assemblages A and B and canine-specific assemblage C were identified in farm 1, whereas, only assemblage E was detected in farm 2. Interestingly, two pig isolates showed 100% homology with human-derived isolates from Australia and China at the bg and tpi loci respectively. Pigs infected with Giardia infect humans by polluting the environment; whether pigs are a potential environmental source of the human pathogen in China requires more epidemiological data.
Asunto(s)
Genotipo , Giardia lamblia/clasificación , Giardiasis/veterinaria , Tipificación de Secuencias Multilocus , Enfermedades de los Porcinos/parasitología , Animales , China/epidemiología , Proteínas del Citoesqueleto/genética , Granjas , Heces/parasitología , Variación Genética , Giardiasis/epidemiología , Glutamato Deshidrogenasa/genética , Humanos , Filogenia , Prevalencia , Proteínas Protozoarias/genética , Porcinos/parasitología , Enfermedades de los Porcinos/epidemiología , Triosa-Fosfato Isomerasa/genéticaRESUMEN
BACKGROUND/AIMS: This study aims to predict the pro-angiogenic functions of monocytic-type myeloid-derived suppressor cells (M-MDSCs) derived from mice infected with Echinococcus granulosus. METHODS: M-MDSCs were collected from Balb/c mice infected with E. granulosus and normal mice (control) and cultured in vitro. Human umbilical vein endothelial cells (HUVECs) were stimulated with the cell supernatant, and angiogenesis was investigated and analysed by the Angiogenesis module of the software NIH Image J. RNA was extracted from fresh isolated M-MDSCs and analysed with miRNA microarray; differentially expressed miRNAs and their potential functions were analysed through several bioinformatics tools. Finally, quantitative PCR was used to confirm the results of microarray analysis. RESULTS: M-MDSCs from mice infected with E. granulosus could promote the formation of tubes from HUVECs in vitro. Moreover, vascular endothelial growth factor (VEGF) showed significantly high expression, whereas soluble fms-like tyrosine kinase-1 (sFlt-1) showed low expression at the transcriptional level in M-MDSCs from mice infected with E. granulosus. Microarray analysis of miRNAs showed that 28 miRNAs were differentially expressed in M-MDSCs from the two experimental mice groups, and 272 target genes were predicted using the microRNA databases TargetScan, PITA and microRNAorg. These target genes were mainly involved in the biological processes of intracellular protein transport, protein targeting to the lysosome and protein transport, and mainly located in the cytoplasm, neuronal cell body and membrane. Moreover, they were mainly involved in the molecular functions of protein binding, metal ion binding and SH3 domain binding. Further, the differentially expressed miRNAs were mainly enriched in the endocytosis, Wnt and axon guidance pathways, as well as the MAPK, focal adhesion, PI3K-Akt, cAMP, mTOR and TGF-ß signalling pathways, which are linked to immunoregulation and angiogenesis based on the results of bioinformatics analysis with DIANA-miRPath 3.0. In addition, the expression of eight miRNAs was randomly verified by quantitative PCR independently in three mice infected with E. granulosus and three normal mice. CONCLUSION: M-MDSCs have a potential angiogenic role during E. granulosus infection, and miRNAs may play a role in the immune response and angiogenesis functions of M-MDSCs through regulation of the identified signalling pathways.
Asunto(s)
Equinococosis/genética , Echinococcus granulosus/fisiología , Regulación de la Expresión Génica , MicroARNs/genética , Células Supresoras de Origen Mieloide/virología , Neovascularización Patológica/genética , Animales , Células Cultivadas , Equinococosis/patología , Equinococosis/virología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos BALB C , Células Supresoras de Origen Mieloide/patología , Neovascularización Patológica/patología , Neovascularización Patológica/virología , Factor A de Crecimiento Endotelial Vascular/genéticaRESUMEN
BACKGROUND: Malaria was once one of the most serious public health problems in China. However, the disease burden has sharply declined and epidemic areas have shrunk after the implementation of an integrated malaria control and elimination strategy, especially since 2000. In this review, the lessons were distilled from the Chinese national malaria elimination programme and further efforts to mitigate the challenges of malaria resurgence are being discussed. METHODS: A retrospective evaluation was performed to assess the changes in malaria epidemic patterns from 1950 to 2017 at national level. The malaria data before 2004 were collected from paper-based annual reports. After 2004, each of the different cases from the Infectious Diseases Information Reporting Management System (IDIRMS) was closely examined and scrutinized. An additional documenting system, the National Information Management System for Malaria, established in 2012 to document the interventions of three parasitic diseases, was also examined to complete the missing data from IDIRMS. RESULTS: From 1950 to 2017, the occurrence of indigenous malaria has been steeply reduced, and malaria-epidemic regions have substantially shrunk, especially after the launch of the national malaria elimination programme. There were approximately 30 million malaria cases annually before 1949 with a mortality rate of 1%. A total of 5999 indigenous cases were documented from 2010 to 2016, with a drastic reduction of 99% over the 6 years (2010, n = 4262; 2016, n = 3). There were indigenous cases reported in 303 counties from 18 provinces in 2010, but only 3 indigenous cases were reported in 2 provinces nationwide in 2016. While in 2017, for the first time, zero indigenous case was reported in China, and only 7 of imported cases were in individuals who died of Plasmodium falciparum infection. CONCLUSION: Malaria elimination in China is a country-led and country-owned endeavour. The country-own efforts were a clear national elimination strategy, supported by two systems, namely a case-based surveillance and response system and reference laboratory system. The country-led efforts were regional and inter-sectoral collaboration as well as sustained monitoring and evaluation. However, there are still some challenges, such as the maintenance of non-transmission status, the implementation of a qualified verification and assessment system, and the management of imported cases in border areas, through regional cooperation. The findings from this review can probably help improving malaria surveillance systems in China, but also in other elimination countries.
Asunto(s)
Erradicación de la Enfermedad/estadística & datos numéricos , Malaria Falciparum/prevención & control , Malaria Vivax/prevención & control , China/epidemiología , Control de Enfermedades Transmisibles/estadística & datos numéricos , Incidencia , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Estudios RetrospectivosRESUMEN
BACKGROUND: Enterocytozoon bieneusi has been increasingly reported to infect humans and various mammals. Microsporidia cause diarrhea in HIV-infected patients worldwide. PCR amplification and sequencing based on the internal transcribed spacer region have been used to describe the genotypes of E. bieneusi and transmission of microsporidiosis. METHODS: In this study, we examined E. bieneusi infection and genotypes in HIV-positive patients in Guangxi, China. Stool specimens were collected from 285 HIV-positive patients and 303 HIV-negative individuals. E. bieneusi genotypes were characterized using nested PCR and sequencing. RESULTS: Thirty-three (11.58%) HIV-positive patients were infected with microsporidia, and no infection was found in the 303 healthy controls. Three new genotypes were identified and named as GX25, GX456, and GX458; four known genotypes, PigEBITS7, Type IV/K, D, and Ebpc, were also identified. Our data showed that the positive rate for microsporidia was significantly higher in the rural patients than in the other occupation groups. In addition, the positive rate for microsporidia was significantly higher in the patients who drink unboiled water than in those with other drinking water sources. CONCLUSIONS: Our results will provide baseline data for preventing and controlling E. bieneusi infection in HIV/AIDS patients. Further studies are required to clarify the epidemiology and potential sources of microsporidia. Our study showed that microsporidium infection occurs in the HIV/AIDS patients in Guangxi, China.
Asunto(s)
Enterocytozoon/genética , Infecciones por VIH/diagnóstico , Microsporidiosis/diagnóstico , Adulto , Animales , China/epidemiología , ADN de Hongos/química , ADN de Hongos/aislamiento & purificación , ADN de Hongos/metabolismo , Enterocytozoon/clasificación , Enterocytozoon/aislamiento & purificación , Heces/microbiología , Femenino , Genotipo , Infecciones por VIH/complicaciones , Humanos , Masculino , Microsporidiosis/epidemiología , Microsporidiosis/microbiología , Persona de Mediana Edad , Filogenia , Reacción en Cadena de la Polimerasa , Prevalencia , Factores de Riesgo , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: In China, the prevalence of malaria has reduced dramatically due to the elimination programme. The continued success of the programme will depend upon the accurate diagnosis of the disease in the laboratory. The basic requirements for this are a reliable malaria diagnosis laboratory network and quality management system to support case verification and source tracking. METHODS: The baseline information of provincial malaria laboratories in the China malaria diagnosis reference laboratory network was collected and analysed, and a quality-assurance activity was carried out to assess their accuracies in malaria diagnosis by microscopy using WHO standards and PCR. RESULTS: By the end of 2013, nineteen of 24 provincial laboratories have been included in the network. In the study, a total of 168 staff were registered and there was no bias in their age, gender, education level, and position. Generally Plasmodium species were identified with great accuracy by microscopy and PCR. However, Plasmodium ovale was likely to be misdiagnosed as Plasmodium vivax by microscopy. CONCLUSIONS: China has established a laboratory network for primary malaria diagnosis which will cover a larger area. Currently, Plasmodium species can be identified fairly accurately by microscopy and PCR. However, laboratory staff need additional trainings on accurate identification of P. ovale microscopically and good performance of PCR operations.
Asunto(s)
Erradicación de la Enfermedad/métodos , Laboratorios/organización & administración , Malaria/diagnóstico , Malaria/prevención & control , Plasmodium/aislamiento & purificación , China/epidemiología , Técnicas de Laboratorio Clínico/métodos , Técnicas de Laboratorio Clínico/normas , Pruebas Diagnósticas de Rutina/métodos , Pruebas Diagnósticas de Rutina/normas , Humanos , Malaria/epidemiología , Microscopía/métodos , Microscopía/normas , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/normasRESUMEN
Echinococcus granulosus is a cestode parasite. The metacestode stage causes cystic echinococcosis (CE) mainly in the human liver and lung. Current chemotherapy against CE is based on mebendazole and albendazole. However, benzimidazoles result in a low cure rate or are ineffective in many patients; therefore, novel compounds for the treatment of this disease have been studied. Mefloquine was reported to be dramatically effective on cultured Echinococcus multilocularis metacestodes in vitro. And, nitazoxanide has a prominent protoscolicidal effect. However, these compounds have no impact on the growth of cysts harbored in mice. In this study, we investigated the in vitro and in vivo efficacy of mebendazole, mefloquine, and nitazoxanide against E. granulosus protoscoleces, germinal cells, and infected mice. The effect of mebendazole on protoscoleces and germinal cell was proved to be dose-dependent in vitro. And, a reduction of the cyst weight was also the found after oral application of mebendazole to infected mice. Mefloquine (5 and 10 µg/ml) caused death within 24 h of protoscoleces and germinal cells in vitro, whereas a lower concentration of 1 µg/ml was ineffective. In mice infected with E. granulosus, oral mefloquine (200 and 400 mg/kg twice weekly for 2 weeks) showed no reduction in parasite weight. Without affecting the viability of germinal cells and the growth of hydatid cysts, nitazoxanide only showed protoscolicidal effects in infected mice. In conclusion, mebendazole, mefloquine, and nitazoxanide showed various effects on E. granulosus under different conditions. These drugs could be useful to some extent in the treatment of CE.
Asunto(s)
Equinococosis/tratamiento farmacológico , Echinococcus granulosus/efectos de los fármacos , Mebendazol/uso terapéutico , Mefloquina/uso terapéutico , Tiazoles/uso terapéutico , Animales , Quistes , Equinococosis/parasitología , Humanos , Larva/efectos de los fármacos , Hígado/efectos de los fármacos , Ratones , NitrocompuestosRESUMEN
BACKGROUND: Cryptosporidium spp., Enterocytozoon spp., Giardia spp. and Cyclospora spp. are important intestinal protozoan parasites causing diarrhea in humans, livestocks and wildlife and have a significant impact on public health. No reports exist about simultaneous prevalence rates or genotyping data of these four parasites in outpatients from China. METHODS: Fecal specimens from 252 diarrhea patients in a pediatric clinic (n = 169) and an intestinal clinic (n = 83) of a hospital in Shanghai, China, were collected between October 2012 and March 2013. All samples were examined for the presence of the four parasites by using molecular methods. RESULTS: In total, 76/252 (30.16%) patients were positive for at least one intestinal parasite, of which Cryptosporidium spp., Enterocytozoon bieneusi and Giardia intestinalis were detected by nested PCR in 34 (13.49%), 34 (13.49%) and 17 (6.75%) of the fecal specimens, respectively. Sequence analysis showed that all Cryptosporidium-positive specimens were C. andersoni and that most G. intestinalis- positive patients were infected by assemblage C, which is usually found in canids, while only one sample was from assemblage B. Eight patients were co-infected with Cryptosporidium spp. and Enterocytozoon, while one was co-infected with Cryptosporidium and Giardia. CONCLUSIONS: The patients infected with Cryptosporidium and Enterocytozoon bieneusi had higher infection rates in winter than in spring in this area. Data indicated that C. andersoni is the fourth major Cryptosporidium species infecting humans in addition to C. hominis, C. parvum and C. meleagridis. Our study also revealed a short-term outbreak of cryptosporidiosis and microsporidiosis and sporadic cases of giardiasis that occurred among humans in Shanghai, China.