Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 623(7987): 580-587, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938769

RESUMEN

Microsatellite repeat expansions within genes contribute to a number of neurological diseases1,2. The accumulation of toxic proteins and RNA molecules with repetitive sequences, and/or sequestration of RNA-binding proteins by RNA molecules containing expanded repeats are thought to be important contributors to disease aetiology3-9. Here we reveal that the adenosine in CAG repeat RNA can be methylated to N1-methyladenosine (m1A) by TRMT61A, and that m1A can be demethylated by ALKBH3. We also observed that the m1A/adenosine ratio in CAG repeat RNA increases with repeat length, which is attributed to diminished expression of ALKBH3 elicited by the repeat RNA. Additionally, TDP-43 binds directly and strongly with m1A in RNA, which stimulates the cytoplasmic mis-localization and formation of gel-like aggregates of TDP-43, resembling the observations made for the protein in neurological diseases. Moreover, m1A in CAG repeat RNA contributes to CAG repeat expansion-induced neurodegeneration in Caenorhabditis elegans and Drosophila. In sum, our study offers a new paradigm of the mechanism through which nucleotide repeat expansion contributes to neurological diseases and reveals a novel pathological function of m1A in RNA. These findings may provide an important mechanistic basis for therapeutic intervention in neurodegenerative diseases emanating from CAG repeat expansion.


Asunto(s)
Adenosina , Caenorhabditis elegans , Proteínas de Unión al ADN , Drosophila melanogaster , Enfermedades Neurodegenerativas , ARN , Expansión de Repetición de Trinucleótido , Animales , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , ARN/química , ARN/genética , ARN/metabolismo , Expansión de Repetición de Trinucleótido/genética , Citoplasma/metabolismo , Modelos Animales de Enfermedad
3.
Proteomics ; 23(3-4): e2200059, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35443089

RESUMEN

RNA contains more than 170 types of chemical modifications, and these modified nucleosides are recognized, installed and removed by their reader, writer, and eraser (RWE) proteins, respectively. Here, we employed a parallel-reaction monitoring (PRM)-based targeted proteomic method, in conjunction with stable isotope labeling by amino acids in cell culture (SILAC), to examine comprehensively the differential expression of epitranscriptomic RWE proteins in a matched pair of primary/metastatic colorectal cancer (CRC) cells, namely SW480/SW620. We were able to quantify 113 nonredundant epitranscriptomic RWE proteins; among them, 48 and 5 were up- and down-regulated by >1.5-fold in SW620 over SW480 cells, respectively. Some of those proteins with marked up-regulation in metastatic CRC cells, including NAT10, hnRNPC, and DKC1, were documented to assume important roles in the metastasis of CRC and other types of cancer. Interrogation of the Clinical Proteomic Tumor Analysis Consortium data revealed the involvement of DUS1L in the initiation and metastatic transformation of CRC. It can be envisaged that the PRM method can be utilized, in the future, to identify epitranscriptomic RWE proteins involved in the metastatic transformations of other types of cancer.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral , Proteómica/métodos , Regulación hacia Arriba , Metástasis de la Neoplasia , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/genética
4.
J Proteome Res ; 22(7): 2179-2185, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37348120

RESUMEN

Osteogenesis is modulated by multiple regulatory networks. Recent studies showed that RNA modifications and their reader, writer, and eraser (RWE) proteins are involved in regulating various biological processes. Few studies, however, were conducted to investigate the functions of RNA modifications and their RWE proteins in osteogenesis. By using LC-MS/MS in parallel-reaction monitoring (PRM) mode, we performed a comprehensive quantitative assessment of 154 epitranscriptomic RWE proteins throughout the entire time course of osteogenic differentiation in H9 human embryonic stem cells (ESCs). We found that approximately half of the 127 detected RWE proteins were down-regulated during osteogenic differentiation, and they included mainly proteins involved in RNA methylation and pseudouridylation. Protein-protein interaction (PPI) network analysis unveiled significant associations between the down-regulated epitranscriptomic RWE proteins and osteogenesis-related proteins. Gene set enrichment analysis (GSEA) of publicly available RNA-seq data obtained from osteogenesis imperfecta patients suggested a potential role of METTL1 in osteogenesis through the cytokine network. Together, this is the first targeted profiling of epitranscriptomic RWE proteins during osteogenic differentiation of human ESCs, and our work unveiled potential regulatory roles of these proteins in osteogenesis. LC-MS/MS data were deposited on ProteomeXchange (PXD039249).


Asunto(s)
Células Madre Embrionarias Humanas , Osteogénesis , Humanos , Osteogénesis/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Diferenciación Celular/genética , ARN/genética
5.
Anal Chem ; 95(25): 9672-9679, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37296074

RESUMEN

Trimethylation of lysine 36 on histone H3 (H3K36me3), an epigenetic mark associated with actively transcribed genes, plays an important role in multiple cellular processes, including transcription elongation, DNA methylation, DNA repair, etc. Aberrant expression and mutations of the main methyltransferase for H3K36me3, i.e., SET domain-containing 2 (SETD2), were shown to be associated with various cancers. Here, we performed targeted profiling of 154 epitranscriptomic reader, writer, and eraser (RWE) proteins using a scheduled liquid chromatography-parallel-reaction monitoring (LC-PRM) method coupled with the use of stable isotope-labeled (SIL) peptides as internal standards to investigate how H3K36me3 modulates the chromatin occupancies of epitranscriptomic RWE proteins. Our results showed consistent changes in chromatin occupancies of RWE proteins upon losses of H3K36me3 and H4K16ac and a role of H3K36me3 in recruiting METTL3 to chromatin following induction of DNA double-strand breaks. In addition, protein-protein interaction network and Kaplan-Meier survival analyses revealed the importance of METTL14 and TRMT11 in kidney cancer. Taken together, our work unveiled cross-talks between histone epigenetic marks (i.e., H3K36me3 and H4K16ac) and epitranscriptomic RWE proteins and uncovered the potential roles of these RWE proteins in H3K36me3-mediated biological processes.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Histonas/metabolismo , Cromatina , Metilación de ADN , Metiltransferasas/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(31): 18439-18447, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32675241

RESUMEN

In mammals, repressive histone modifications such as trimethylation of histone H3 Lys9 (H3K9me3), frequently coexist with DNA methylation, producing a more stable and silenced chromatin state. However, it remains elusive how these epigenetic modifications crosstalk. Here, through structural and biochemical characterizations, we identified the replication foci targeting sequence (RFTS) domain of maintenance DNA methyltransferase DNMT1, a module known to bind the ubiquitylated H3 (H3Ub), as a specific reader for H3K9me3/H3Ub, with the recognition mode distinct from the typical trimethyl-lysine reader. Disruption of the interaction between RFTS and the H3K9me3Ub affects the localization of DNMT1 in stem cells and profoundly impairs the global DNA methylation and genomic stability. Together, this study reveals a previously unappreciated pathway through which H3K9me3 directly reinforces DNMT1-mediated maintenance DNA methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN , Heterocromatina/metabolismo , Histonas/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Heterocromatina/genética , Histonas/química , Histonas/genética , Humanos , Lisina/genética , Lisina/metabolismo , Metilación , Procesamiento Proteico-Postraduccional
7.
J Proteome Res ; 21(8): 2063-2070, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35820187

RESUMEN

Kinases play important roles in cell signaling, and adenosine monophosphate (AMP) is known to modulate cellular energy homeostasis through AMP-activated protein kinase (AMPK). Here, we explored novel AMP-binding kinases by employing a desthiobiotin-conjugated AMP acyl-phosphate probe to enrich efficiently AMP-binding proteins. Together with a parallel-reaction monitoring-based targeted proteomic approach, we uncovered 195 candidate AMP-binding kinases. We also enriched desthiobiotin-labeled peptides from adenine nucleotide-binding sites of kinases and analyzed them using LC-MS/MS in the multiple-reaction monitoring mode, which resulted in the identification of 44 peptides derived from 43 kinases displaying comparable or better binding affinities toward AMP relative to adenosine triphosphate (ATP). Moreover, our proteomic data revealed a potential involvement of AMP in the MAPK pathway through binding directly to the relevant kinases, especially MEK2 and MEK3. Together, we revealed the AMP-binding capacities of a large number of kinases, and our work built a strong foundation for understanding how AMP functions as a second messenger to modulate cell signaling.


Asunto(s)
Proteoma , Proteómica , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato , Adenosina Trifosfato/metabolismo , Cromatografía Liquida , Péptidos , Proteoma/genética , Espectrometría de Masas en Tándem
8.
J Am Chem Soc ; 144(23): 10471-10482, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35612610

RESUMEN

The hydrolytic loss of coding bases from cellular DNA is a common and unavoidable reaction. The resulting abasic sites can undergo ß-elimination of the 3'-phosphoryl group to generate a strand break with an electrophilic α,ß-unsaturated aldehyde residue on the 3'-terminus. The work reported here provides evidence that the thiol residue of the cellular tripeptide glutathione rapidly adds to the alkenal group on the 3'-terminus of an AP-derived strand break. The resulting glutathionylated adduct is the only major cleavage product observed when ß-elimination occurs at an AP site in the presence of glutathione. Formation of the glutathionylated cleavage product is reversible, but in the presence of physiological concentrations of glutathione, the adduct persists for days. Biochemical experiments provided evidence that the 3'-phosphodiesterase activity of the enzyme apurinic/apyrimidinic endonuclease (APE1) can remove the glutathionylated sugar remnant from an AP-derived strand break to generate the 3'OH residue required for repair via base excision or single-strand break repair pathways. The results suggest that a previously unrecognized 3'glutathionylated sugar remnant─and not the canonical α,ß-unsaturated aldehyde end group─may be the true strand cleavage product arising from ß-elimination at an abasic site in cellular DNA. This work introduces the 3'glutathionylated cleavage product as the major blocking group that must be trimmed to enable repair of abasic site-derived strand breaks by the base excision repair or single-strand break repair pathways.


Asunto(s)
Daño del ADN , Reparación del ADN , Aldehídos , ADN/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Glutatión , Azúcares
9.
Anal Chem ; 94(45): 15595-15603, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36332130

RESUMEN

Apurinic/apyrimidinic (AP) sites, that is, abasic sites, are among the most frequently induced DNA lesions. Spontaneous or DNA glycosylase-mediated ß-elimination of the 3'-phosphoryl group can lead to strand cleavages at AP sites to yield a highly reactive, electrophilic 3'-phospho-α,ß-unsaturated aldehyde (3'-PUA) remnant. The latter can react with amine or thiol groups of biological small molecules, DNA, and proteins to yield various damaged 3'-end products. Considering its high intracellular concentration, glutathione (GSH) may conjugate with 3'-PUA to yield 3-glutathionyl-2,3-dideoxyribose (GS-ddR), which may constitute a significant, yet previously unrecognized endogenous lesion. Here, we developed a liquid chromatography tandem mass spectroscopy method, in combination with the use of a stable isotope-labeled internal standard, to quantify GS-ddR in genomic DNA of cultured human cells. Our results revealed the presence of GS-ddR in the DNA of untreated cells, and its level was augmented in cells upon exposure to an alkylating agent, N-methyl-N-nitrosourea (MNU). In addition, inhibition of AP endonuclease (APE1) led to an elevated level of GS-ddR in the DNA of MNU-treated cells. Together, we reported here, for the first time, the presence of appreciable levels of GS-ddR in cellular DNA, the induction of GS-ddR by a DNA alkylating agent, and the role of APE1 in modulating its level in human cells.


Asunto(s)
Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Humanos , Animales , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Metilnitrosourea , Daño del ADN , ADN/química , Alquilantes , Mamíferos/metabolismo
10.
Anal Chem ; 94(37): 12559-12564, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36084281

RESUMEN

N6-Methyladenosine (m6A) and its reader, writer, and eraser (RWE) proteins assume crucial roles in regulating the splicing, stability, and translation of mRNA. Aside from m6A, RNA is known to carry many other types of chemical modifications; no systematic investigations, however, have been conducted about the crosstalk between m6A and other modified nucleosides in RNA. Here, we modified our recently established liquid chromatography-parallel-reaction monitoring (LC-PRM) method by incorporating stable isotope-labeled (SIL) peptides as internal or surrogate standards for profiling epitranscriptomic RWE proteins. We were able to detect reproducibly a total of 114 RWE proteins in HEK293T cells with the genes encoding m6A eraser proteins (i.e., ALKBH5, FTO) and the catalytic subunit of the major m6A writer complex (i.e., METTL3) being individually ablated. Notably, eight proteins, including writer proteins for 5-methylcytidine and pseudouridine, were altered by more than 1.5-fold in the opposite directions in HEK293T cells depleted of METTL3 and ALKBH5. Analysis of previously published m6A mapping results revealed the presence of m6A in the corresponding mRNAs for four of these proteins. Together, we integrated SIL peptides into our LC-PRM method for quantifying epitranscriptomic RWE proteins, and our work revealed potential crosstalks between m6A and other epitranscriptomic modifications. Our modified LC-PRM method with the use of SIL peptides should be applicable for high-throughput profiling of epitranscriptomic RWE proteins in other cell types and in tissues.


Asunto(s)
Adenosina , Seudouridina , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Células HEK293 , Humanos , Isótopos , Metiltransferasas/metabolismo , Péptidos , Proteínas , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
J Am Chem Soc ; 143(37): 15344-15357, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34516735

RESUMEN

Interstrand DNA cross-links (ICLs) are cytotoxic because they block the strand separation required for read-out and replication of the genetic information in duplex DNA. The unavoidable formation of ICLs in cellular DNA may contribute to aging, neurodegeneration, and cancer. Here, we describe the formation and properties of a structurally complex ICL derived from an apurinic/apyrimidinic (AP) site, which is one of the most common endogenous lesions in cellular DNA. The results characterize a cross-link arising from aza-Michael addition of the N2-amino group of a guanine residue to the electrophilic sugar remnant generated by spermine-mediated strand cleavage at an AP site in duplex DNA. An α,ß-unsaturated iminium ion is the critical intermediate involved in ICL formation. Studies employing the bacteriophage φ29 polymerase provided evidence that this ICL can block critical DNA transactions that require strand separation. The results of biochemical studies suggest that this complex strand break/ICL might be repaired by a simple mechanism in which the 3'-exonuclease action of the enzyme apurinic/apyrimidinic endonuclease (APE1) unhooks the cross-link to initiate repair via the single-strand break repair pathway.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN/química , Conformación de Ácido Nucleico
12.
Nucleic Acids Res ; 47(22): 11527-11537, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31733056

RESUMEN

DNA methyltransferases (DNMTs) are enzymes responsible for establishing and maintaining DNA methylation in cells. DNMT inhibition is actively pursued in cancer treatment, dominantly through the formation of irreversible covalent complexes between small molecular compounds and DNMTs that suffers from low efficacy and high cytotoxicity, as well as no selectivity towards different DNMTs. Herein, we discover aptamers against the maintenance DNA methyltransferase, DNMT1, by coupling Asymmetrical Flow Field-Flow Fractionation (AF4) with Systematic Evolution of Ligands by EXponential enrichment (SELEX). One of the identified aptamers, Apt. #9, contains a stem-loop structure, and can displace the hemi-methylated DNA duplex, the native substrate of DNMT1, off the protein on sub-micromolar scale, leading for effective enzymatic inhibition. Apt. #9 shows no inhibition nor binding activity towards two de novo DNMTs, DNMT3A and DNMT3B. Intriguingly, it can enter cancer cells with over-expression of DNMT1, colocalize with DNMT1 inside the nuclei, and inhibit the activity of DNMT1 in cells. This study opens the possibility of exploring the aptameric DNMT inhibitors being a new cancer therapeutic approach, by modulating DNMT activity selectively through reversible interaction. The aptamers could also be valuable tools for study of the functions of DNMTs and the related epigenetic mechanisms.


Asunto(s)
Aptámeros de Nucleótidos/química , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , Metilación de ADN/genética , Neoplasias/genética , Aptámeros de Nucleótidos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/análisis , Epigénesis Genética/genética , Células HEK293 , Células HeLa , Humanos , Neoplasias/tratamiento farmacológico
13.
Nat Commun ; 15(1): 3111, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600075

RESUMEN

DNA methyltransferases DNMT3A- and DNMT3B-mediated DNA methylation critically regulate epigenomic and transcriptomic patterning during development. The hotspot DNMT3A mutations at the site of Arg822 (R882) promote polymerization, leading to aberrant DNA methylation that may contribute to the pathogenesis of acute myeloid leukemia (AML). However, the molecular basis underlying the mutation-induced functional misregulation of DNMT3A remains unclear. Here, we report the crystal structures of the DNMT3A methyltransferase domain, revealing a molecular basis for its oligomerization behavior distinct to DNMT3B, and the enhanced intermolecular contacts caused by the R882H or R882C mutation. Our biochemical, cellular, and genomic DNA methylation analyses demonstrate that introducing the DNMT3B-converting mutations inhibits the R882H-/R882C-triggered DNMT3A polymerization and enhances substrate access, thereby eliminating the dominant-negative effect of the DNMT3A R882 mutations in cells. Together, this study provides mechanistic insights into DNMT3A R882 mutations-triggered aberrant oligomerization and DNA hypomethylation in AML, with important implications in cancer therapy.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Leucemia Mieloide Aguda , Humanos , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Mutación , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Metilación de ADN/genética , ADN/metabolismo
14.
J Med Chem ; 65(16): 10920-10937, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35939803

RESUMEN

Aberrant regulation of N6-methyladenosine (m6A) RNA modification has been implicated in the progression of multiple diseases, including cancer. Previously, we identified a small molecule inhibitor of the m6A demethylase fat mass- and obesity-associated protein (FTO), which removes both m6A and N6,2'-O-dimethyladenosine (m6Am) RNA modifications. In this work, we describe the rational design and optimization of a new class of FTO inhibitors derived from our previous lead FTO-04 with nanomolar potency and high selectivity against the homologous m6A RNA demethylase ALKBH5. The oxetanyl class of compounds comprise competitive inhibitors of FTO with potent antiproliferative effects in glioblastoma, acute myeloid leukemia, and gastric cancer models where lead FTO-43 demonstrated potency comparable to clinical chemotherapeutic 5-fluorouracil. Furthermore, FTO-43 increased m6A and m6Am levels in a manner comparable to FTO knockdown in gastric cancer cells and regulated Wnt/PI3K-Akt signaling pathways. The oxetanyl class contains significantly improved anticancer agents with a variety of applications beyond glioblastoma.


Asunto(s)
Antineoplásicos , Glioblastoma , Neoplasias Gástricas , Adenosina/metabolismo , Adenosina/farmacología , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Antineoplásicos/farmacología , Glioblastoma/tratamiento farmacológico , Humanos , Fosfatidilinositol 3-Quinasas , ARN , ARN Mensajero/metabolismo , Neoplasias Gástricas/tratamiento farmacológico
15.
Nat Commun ; 13(1): 4249, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869095

RESUMEN

DNA methyltransferase DNMT3B plays an essential role in establishment of DNA methylation during embryogenesis. Mutations of DNMT3B are associated with human diseases, notably the immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome. How ICF mutations affect DNMT3B activity is not fully understood. Here we report the homo-oligomeric structure of DNMT3B methyltransferase domain, providing insight into DNMT3B-mediated DNA methylation in embryonic stem cells where the functional regulator DNMT3L is dispensable. The interplay between one of the oligomer interfaces (FF interface) and the catalytic loop renders DNMT3B homo-oligomer a conformation and activity distinct from the DNMT3B-DNMT3L heterotetramer, and a greater vulnerability to certain ICF mutations. Biochemical and cellular analyses further reveal that the ICF mutations of FF interface impair the DNA binding and heterochromatin targeting of DNMT3B, leading to reduced DNA methylation in cells. Together, this study provides a mechanistic understanding of DNMT3B-mediated DNA methylation and its dysregulation in disease.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Síndromes de Inmunodeficiencia , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Cara/anomalías , Humanos , Síndromes de Inmunodeficiencia/genética , Mutación , Enfermedades de Inmunodeficiencia Primaria
16.
Nat Commun ; 12(1): 2490, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941775

RESUMEN

DNA methylation and trimethylated histone H4 Lysine 20 (H4K20me3) constitute two important heterochromatin-enriched marks that frequently cooperate in silencing repetitive elements of the mammalian genome. However, it remains elusive how these two chromatin modifications crosstalk. Here, we report that DNA methyltransferase 1 (DNMT1) specifically 'recognizes' H4K20me3 via its first bromo-adjacent-homology domain (DNMT1BAH1). Engagement of DNMT1BAH1-H4K20me3 ensures heterochromatin targeting of DNMT1 and DNA methylation at LINE-1 retrotransposons, and cooperates with the previously reported readout of histone H3 tail modifications (i.e., H3K9me3 and H3 ubiquitylation) by the RFTS domain to allosterically regulate DNMT1's activity. Interplay between RFTS and BAH1 domains of DNMT1 profoundly impacts DNA methylation at both global and focal levels and genomic resistance to radiation-induced damage. Together, our study establishes a direct link between H4K20me3 and DNA methylation, providing a mechanism in which multivalent recognition of repressive histone modifications by DNMT1 ensures appropriate DNA methylation patterning and genomic stability.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Animales , Línea Celular , Cristalografía por Rayos X , Genoma/genética , Inestabilidad Genómica/genética , Heterocromatina/genética , Ratones
17.
Nat Commun ; 11(1): 3355, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620778

RESUMEN

Mammalian DNA methylation patterns are established by two de novo DNA methyltransferases, DNMT3A and DNMT3B, which exhibit both redundant and distinctive methylation activities. However, the related molecular basis remains undetermined. Through comprehensive structural, enzymology and cellular characterization of DNMT3A and DNMT3B, we here report a multi-layered substrate-recognition mechanism underpinning their divergent genomic methylation activities. A hydrogen bond in the catalytic loop of DNMT3B causes a lower CpG specificity than DNMT3A, while the interplay of target recognition domain and homodimeric interface fine-tunes the distinct target selection between the two enzymes, with Lysine 777 of DNMT3B acting as a unique sensor of the +1 flanking base. The divergent substrate preference between DNMT3A and DNMT3B provides an explanation for site-specific epigenomic alterations seen in ICF syndrome with DNMT3B mutations. Together, this study reveals distinctive substrate-readout mechanisms of the two DNMT3 enzymes, implicative of their differential roles during development and pathogenesis.


Asunto(s)
Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Animales , Dominio Catalítico , Línea Celular , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/ultraestructura , ADN Metiltransferasa 3A , Células Madre Embrionarias , Pruebas de Enzimas , Epigénesis Genética , Cara/anomalías , Humanos , Ratones , Mutación , Enfermedades de Inmunodeficiencia Primaria/genética , Relación Estructura-Actividad , Especificidad por Sustrato/genética , Difracción de Rayos X , ADN Metiltransferasa 3B
18.
Cancer Res ; 79(14): 3583-3594, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31164355

RESUMEN

Mutation of DNA methyltransferase 3A at arginine 882 (DNMT3AR882mut) is prevalent in hematologic cancers and disorders. Recently, DNMT3AR882mut has been shown to have hypomorphic, dominant-negative, and/or gain-of-function effects on DNA methylation under different biological contexts. However, the causal role for such a multifaceted effect of DNMT3AR882mut in leukemogenesis remains undetermined. Here, we report TF-1 leukemia cells as a robust system useful for modeling the DNMT3AR882mut-dependent transformation and for dissecting the cause-effect relationship between multifaceted activities of DNMT3AR882mut and leukemic transformation. Ectopic expression of DNMT3AR882mut and not wild-type DNMT3A promoted TF-1 cell transformation characterized by cytokine-independent growth, and induces CpG hypomethylation predominantly at enhancers. This effect was dose dependent, acted synergistically with the isocitrate dehydrogenase 1 (IDH1) mutation, and resembled what was seen in human leukemia patients carrying DNMT3AR882mut. The transformation- and hypomethylation-inducing capacities of DNMT3AR882mut relied on a motif involved in heterodimerization, whereas its various chromatin-binding domains were dispensable. Mutation of the heterodimerization motif that interferes with DNMT3AR882mut binding to endogenous wild-type DNMT proteins partially reversed the CpG hypomethylation phenotype caused by DNMT3AR882mut, thus supporting a dominant-negative mechanism in cells. In mice, bromodomain inhibition repressed gene-activation events downstream of DNMT3AR882mut-induced CpG hypomethylation, thereby suppressing leukemogenesis mediated by DNMT3AR882mut. Collectively, this study reports a model system useful for studying DNMT3AR882mut, shows a requirement of the dominant-negative effect by DNMT3AR882mut for leukemogenesis, and describes an attractive strategy for the treatment of leukemias carrying DNMT3AR882mut. SIGNIFICANCE: These findings highlight a model system to study the functional impact of a hotspot mutation of DNMT3A at R882 in leukemia.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Islas de CpG , Metilación de ADN , ADN Metiltransferasa 3A , Regulación Leucémica de la Expresión Génica , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Ratones , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA