Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Proteome Res ; 21(11): 2754-2770, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36251486

RESUMEN

To achieve fertilization, mammalian spermatozoa must undergo capacitation and the acrosome reaction (AR) within the female reproductive tract. However, the effects of cryopreservation on sperm maturation and fertilizing potential have yet to be established. To gain insight into changes in protein levels within sperm cells prepared for use in the context of fertilization, a comprehensive quantitative proteomic profiling approach was used to analyze frozen-thawed Ashidan yak spermatozoa under three sequential conditions: density gradient centrifugation-based purification, incubation in a capacitation medium, and treatment with the calcium ionophore A23187 to facilitate AR induction. In total, 3280 proteins were detected in these yak sperm samples, of which 3074 were quantified, with 68 and 32 being significantly altered following sperm capacitation and AR induction. Differentially abundant capacitation-related proteins were enriched in the metabolism and PPAR signaling pathways, while differentially abundant AR-related proteins were enriched in the AMPK signaling pathway. These data confirmed a role for superoxide dismutase 1 (SOD1) as a regulator of sperm capacitation while also offering indirect evidence that heat shock protein 90 alpha (HSP90AA1) regulates the AR. Together, these findings offer a means whereby sperm fertility-related marker proteins can be effectively identified. Data are available via Proteome Xchange with identifier PXD035038.


Asunto(s)
Reacción Acrosómica , Proteómica , Animales , Bovinos , Masculino , Femenino , Reacción Acrosómica/fisiología , Semen , Capacitación Espermática , Espermatozoides/fisiología , Mamíferos
2.
BMC Vet Res ; 18(1): 248, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761325

RESUMEN

BACKGROUND: High spontaneous miscarriage rate in yak, especially during late pregnancy, have caused a great economic loss to herdsmen living in the Qinghai-Tibet plateau. However, the mechanism underlying spontaneous miscarriage is still poorly understood. In the present study, placenta protein markers were identified to elucidate the pathological reasons for yak spontaneous miscarriage through isobaric tags for relative and absolute quantification (iTRAQ) proteomic technology and bioinformatic approaches. RESULTS: Subsequently, a total of 415 differentially expressed proteins (DEPs) were identified between aborted and normal placentas. The up-regulated DEPs in the aborted placentas were significantly associated with "spinocerebellar ataxia", "sphingolipid signalling", "relaxin signalling", "protein export", "protein digestion and absorption" and "aldosterone synthesis and secretion" pathway. While the down-regulated DEPs in the aborted placentas mainly participated in "valine, leucine and isoleucine degradation", "PPAR signalling", "peroxisome", "oxidative phosphorylation", "galactose metabolism", "fatty acid degradation", "cysteine and methionine metabolism" and "citrate cycle" pathway. CONCLUSIONS: The results implied that the identified DEPs could be considered as placental protein markers for yak miscarriage during late pregnancy, and biomacromolecule metabolic abnormality and oxidative damage might be responsible for the high spontaneous miscarriage rate in yak. These findings provide an important theoretical basis for deciphering the pathologic mechanism of late spontaneous miscarriage in yak.


Asunto(s)
Enfermedades de los Bovinos , Proteómica , Aborto Veterinario , Animales , Bovinos , Enfermedades de los Bovinos/metabolismo , Biología Computacional/métodos , Femenino , Estrés Oxidativo , Placenta/metabolismo , Embarazo , Proteómica/métodos
3.
BMC Vet Res ; 18(1): 34, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35031034

RESUMEN

BACKGROUND: Ovarian follicle fluid (FF) as a microenvironment surrounding oocyte plays critical roles in physio-biochemical processes of follicle development and oocyte maturation. It is hypothesized that proteins in yak FF participate in the physio-biochemical pathways. The primary aims of this study were to find differentially expressed proteins (DEPs) between mature and immature FF, and to elucidating functions of the mature and immature FF in yak. RESULTS: The mature and immature FF samples were obtained from three healthy yaks that were nonpregnant, aged from four to five years, and free from any anatomical reproductive disorders. The FF samples were subjected to mass spectrometry with the isobaric tags for relative and absolute quantification (iTRAQ). The FF samples went through correlation analysis, principle component analysis, and expression pattern analysis based on quantification of the identified proteins. Four hundred sixty-three DEPs between mature and immature FF were identified. The DEPs between the mature and immature FF samples underwent gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein-protein interaction (PPI) analysis. The DEPs highly expressed in the mature FF mainly took parts in the complement and coagulation cascades, defense response, acute-phase response, response to other organism pathways to avoid invasion of exogenous microorganisms. The complement activation pathway contains eight DEPs, namely C2, C5, C6, C7, C9, C4BPA, CFH, and MBL2. The three DEPs, CATHL4, CHGA, and PGLYRP1, take parts in defense response pathway to prevent invasion of exogenetic microorganism. The coagulation cascades pathway involves many coagulation factors, such as F7, F13A1, FGA, FGB, FGG, KLKB1, KNG1, MASP1, SERPINA1, and SERPIND1. While the DEPs highly expressed in the immature FF participated in protein translation, peptide biosynthetic process, DNA conformation change, and DNA geometric change pathways to facilitate follicle development. The translation pathway contains many ribosomal proteins, such as RPL3, RPL5, RPS3, RPS6, and other translation factors, such as EIF3J, EIF4G2, ETF1, MOV10, and NARS. The DNA conformation change and DNA geometric change involve nine DEPs, DDX1, G3BP1, HMGB1, HMGB2, HMGB3, MCM3, MCM5, MCM6, and RUVBL2. Furthermore, the expressed levels of the main DEPs, C2 and SERPIND1, were confirmed by western blot. CONCLUSIONS: The differential proteomics revealed the up-regulated DEPs in mature FF take parts in immunoreaction to prevent invasion of microorganisms and the up-regulated DEPs in immature FF participate in protein synthesis, which may improve our knowledge of the follicular microenvironment and its biological roles for reproductive processes in yak. The DEPs, C2 and SERPIND1, can be considered as protein markers for mature yak follicle.


Asunto(s)
Líquido Folicular/inmunología , Biosíntesis de Proteínas , Proteómica , Animales , Bovinos , ADN , ADN Helicasas , Femenino , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Serpinas
4.
Reprod Domest Anim ; 57(2): 221-227, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34752661

RESUMEN

Luteinizing hormone receptor (LHR), prolactin receptor (PRLR), growth hormone (GH) and insulin-like growth factor 1 (IGF1) have been shown to be key regulators of germ cell development. However, the role of LHR, PRLR, GH and IGF1 in the development of yak testis remains unclear. In this study, we aimed to describe and compare gene expression and protein localization of LHR, PRLR, GH and IGF1 in the development of yak testes. Testes were collected from 6, 24, 36 and 72 months yak, and the kidney, liver, testicular, lung, skeletal muscle, heart and spleen tissues were collected from 36 months yak. The quantitative real-time PCR (qRT-PCR) results showed that the expression of these four genes was widely expressed in kidney, liver, testicular, lung, skeletal muscle, heart and spleen, while the LHR and PRLR were highly expressed in the kidney, skeletal muscle and testis, and higher levels of GH and IGF were expressed in spleen and testis. Moreover, the mRNA expression of these genes in adults was higher than in pre-pubertal yak. In the testis, the LHR-, PRLR-, GH- and IGF1-positive signals were detected in the Leydig cells of the 6 months, while the intense positive signals were discovered in Leydig cells, spermatogonia and spermatocytes of the 36 and 72 months. Thus, LHR, PRLR, GH and IGF1 may be involved in the development of spermatids and spermatocytes, and in the regulation of spermatogonia proliferation and Leydig cell function.


Asunto(s)
Receptores de HL , Receptores de Prolactina , Animales , Bovinos , Hormona del Crecimiento/genética , Factor I del Crecimiento Similar a la Insulina/genética , Células Intersticiales del Testículo , Masculino , Testículo
5.
Meat Sci ; 202: 109201, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37120977

RESUMEN

The present study investigated the effect of slaughter age (2.43 ± 0.20, 4.15 ± 0.19, 6.62 ± 0.18, 10.59 ± 0.74 years) and postmortem aging time (1, 24, and 72 h) on the tenderness and water-holding capacity (WHC) of yak longissimus thoracis muscles to determine the most suitable age for slaughter to ensure product consistency. Under conventional postmortem aging conditions (4 °C), muscles of each age group exhibited the effect of cold shortening. Once the cold shortening occurred, the age effect on thickening muscle fiber and developing cross-links of collagen, considered to intensify the meat toughness, became less important. Owing to greater carcass weight and intramuscular fat, muscles of the older carcass (over 6-year-old) were less influenced by the cold shortening effect during the chilling process and showed lessened sarcomere contraction, delayed formation of drip loss channels, and increased level of myofibril fragmentation index (MFI) and myofiber structural disintegration, resulting in greater tenderness and WHC, especially 6-7 years group. Aging of 72 h structurally disintegrated the collagen cross-linking and integrity of muscle fibers and elevated the MFI, improving the meat tenderness. Therefore, the suitable slaughter age for yak is 6-7 years old and after 72 h aging, improved quality of yak meat can be obtained.


Asunto(s)
Miofibrillas , Agua , Animales , Humanos , Bovinos , Niño , Agua/análisis , Sarcómeros , Factores de Tiempo , Colágeno/análisis , Carne/análisis , Músculo Esquelético/química
6.
Gene ; 818: 146247, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35085710

RESUMEN

As the largest subgroup of intermediate filament proteins, keratins are divided into two types of subfamily. Currently, the molecular mechanism of keratins in several animals has been reported but is limited in yak. Here, 53 different kinds of keratins were identified in the yak genome, including 23 type I and 30 type II keratins. Bioinformatics analysis in this study revealed that multiple phosphorylation sites were identified among all the family members. And the subcellular localization of these proteins was predicted to be in the nucleus, cytoskeleton, and cytoplasm. All keratin family proteins were unstable and the scores of instability coefficient were higher than 40. Phylogenetic analysis showed that high consistency results of the sequence conservation and grouping were found in the genomes of yak, sheep, cattle, mouse, rat, and human. Based on the expression patterns obtained from the transcriptome data, keratin genes (KRTs) were grouped into five clusters, and results also showed that KRTs were highly activated in skin tissues during the hair cycle in yak. Among the five clusters, Cluster II contained the most KRTs, which was the main expression pattern of the yak hair follicle cycle, followed by Cluster III. These results indicated the transition period from telogen to anagen and catagen to telogen were highly dynamic in yak. Gene expression correlation analysis showed that KRTs exhibited a strong correlation (mainly positive correlation) throughout the hair follicle development cycle. And the identification of hub KRTs in specific modules related to hair follicle development in this study was performed using the Weight Gene Co-Expression Network Analysis (WGCNA). Specific modules that include KRTs were darkgreen (KRT40), darkgrey (KRT5), turquoise (KRT1, KRT2, KRT10), bisque4 (KRT4), thistle2 (KRT9, KRT39), and yellowgreen (KRT24). The interaction network showed that these genes were found to be related to the regulation of cell cycle, melanogenesis, hair follicle development, keratinocyte proliferation. Our study provides theoretical support for the study of the evolutionary relationship and molecular mechanism of keratin family in B. grunnien.


Asunto(s)
Bovinos/genética , Regulación de la Expresión Génica , Genoma , Queratinas/genética , Familia de Multigenes , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Folículo Piloso/crecimiento & desarrollo , Queratinas/química , Fosforilación , Filogenia , Estructura Secundaria de Proteína
7.
Front Physiol ; 13: 1013082, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277216

RESUMEN

Mammalian spermatozoa are not mature after ejaculation and must undergo additional functional and structural changes within female reproductive tracts to achieve subsequent fertilization, including both capacitation and acrosome reaction (AR), which are dominated by post-translational modifications (PTMs), especially phosphorylation. However, the mechanism of protein phosphorylation during frozen-thawed sperm capacitation and AR has not been well studied. In this study, the phosphoproteomics approach was employed based on tandem mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategy to analyze frozen-thawed sperm in Ashidan yak under three sequential conditions (density gradient centrifugation-based purification, incubation in the capacitation medium and induction of AR processes by the calcium ionophore A23187 treatment). The identification of 1,377 proteins with 5,509 phosphorylation sites revealed changes in phosphorylation levels of sperm-specific proteins involved in regulation of spermatogenesis, sperm motility, energy metabolism, cilium movement, capacitation and AR. Some phosphorylated proteins, such as AKAP3, AKAP4, SPA17, PDMD11, CABYR, PRKAR1A, and PRKAR2A were found to regulate yak sperm capacitation and AR though the cAMP/PKA signaling pathway cascades. Notably, the phosphorylation level of SPA17 at Y156 increased in capacitated sperm, suggesting that it is also a novel functional protein besides AKAPs during sperm capacitation. Furthermore, the results of this study suggested that the phosphorylation of PRKAR1A and PRKAR2A, and the dephosphorylation of CABYR both play key regulatory role in yak sperm AR process. Protein-protein interaction analysis revealed that differentially phosphorylated proteins (AKAP3, AKAP4, FSIP2, PSMD11, CABYR, and TPPP2) related to capacitation and AR process played a key role in protein kinase A binding, sperm motility, reproductive process, cytoskeleton and sperm flagella function. Taken together, these data provide not only a solid foundation for further exploring phosphoproteome of sperm in yak, but an efficient way to identify sperm fertility-related marker phosphorylated proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA