Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Respir Res ; 22(1): 189, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183009

RESUMEN

BACKGROUND: In this study, we tested whether a combination of radiomic features extracted from baseline pre-immunotherapy computed tomography (CT) images and clinicopathological characteristics could be used as novel noninvasive biomarkers for predicting the clinical benefits of non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs). METHODS: The data from 92 consecutive patients with lung cancer who had been treated with ICIs were retrospectively analyzed. In total, 88 radiomic features were selected from the pretreatment CT images for the construction of a random forest model. Radiomics model 1 was constructed based on the Rad-score. Using multivariate logistic regression analysis, the Rad-score and significant predictors were integrated into a single predictive model (radiomics nomogram model 1) to predict the durable clinical benefit (DCB) of ICIs. Radiomics model 2 was developed based on the same Rad-score as radiomics model 1.Using multivariate Cox proportional hazards regression analysis, the Rad-score, and independent risk factors, radiomics nomogram model 2 was constructed to predict the progression-free survival (PFS). RESULTS: The models successfully predicted the patients who would benefit from ICIs. For radiomics model 1, the area under the receiver operating characteristic curve values for the training and validation cohorts were 0.848 and 0.795, respectively, whereas for radiomics nomogram model 1, the values were 0.902 and 0.877, respectively. For the PFS prediction, the Harrell's concordance indexes for the training and validation cohorts were 0.717 and 0.760, respectively, using radiomics model 2, whereas they were 0.749 and 0.791, respectively, using radiomics nomogram model 2. CONCLUSIONS: CT-based radiomic features and clinicopathological factors can be used prior to the initiation of immunotherapy for identifying NSCLC patients who are the most likely to benefit from the therapy. This could guide the individualized treatment strategy for advanced NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Procesamiento de Imagen Asistido por Computador/métodos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Tomografía Computarizada por Rayos X/métodos , Adolescente , Adulto , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios de Cohortes , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Adulto Joven
2.
Front Oncol ; 12: 895014, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814402

RESUMEN

Objective: To develop and validate a DeepSurv nomogram based on radiomic features extracted from computed tomography images and clinicopathological factors, to predict the overall survival and guide individualized adjuvant chemotherapy in patients with non-small cell lung cancer (NSCLC). Patients and Methods: This retrospective study involved 976 consecutive patients with NSCLC (training cohort, n=683; validation cohort, n=293). DeepSurv was constructed based on 1,227 radiomic features, and the risk score was calculated for each patient as the output. A clinical multivariate Cox regression model was built with clinicopathological factors to determine the independent risk factors. Finally, a DeepSurv nomogram was constructed by integrating the risk score and independent clinicopathological factors. The discrimination capability, calibration, and clinical usefulness of the nomogram performance were assessed using concordance index evaluation, the Greenwood-Nam-D'Agostino test, and decision curve analysis, respectively. The treatment strategy was analyzed using a Kaplan-Meier curve and log-rank test for the high- and low-risk groups. Results: The DeepSurv nomogram yielded a significantly better concordance index (training cohort, 0.821; validation cohort 0.768) with goodness-of-fit (P<0.05). The risk score, age, thyroid transcription factor-1, Ki-67, and disease stage were the independent risk factors for NSCLC.The Greenwood-Nam-D'Agostino test showed good calibration performance (P=0.39). Both high- and low-risk patients did not benefit from adjuvant chemotherapy, and chemotherapy in low-risk groups may lead to a poorer prognosis. Conclusions: The DeepSurv nomogram, which is based on the risk score and independent risk factors, had good predictive performance for survival outcome. Further, it could be used to guide personalized adjuvant chemotherapy in patients with NSCLC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA