Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Ecotoxicol Environ Saf ; 254: 114718, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36950989

RESUMEN

BACKGROUND: Fluoride, an environmental contaminant, is ubiquitously present in air, water, and soil. It usually enters the body through drinking water and may cause structural and functional disorders in the central nervous system in humans and animals. Fluoride exposure affects cytoskeleton and neural function, but the mechanism is not clear. METHODS: The specific neurotoxic mechanism of fluoride was explored in HT-22 cells. Cellular proliferation and toxicity detection were investigated by CCK-8, CCK-F, and cytotoxicity detection kits. The development morphology of HT-22 cells was observed under a light microscope. Cell membrane permeability and neurotransmitter content were determined using lactate dehydrogenase (LDH) and glutamate content determination kits, respectively. The ultrastructural changes were detected by transmission electron microscopy, and actin homeostasis was observed by laser confocal microscopy. ATP enzyme and ATP activity were determined using the ATP content kit and ultramicro-total ATP enzyme content kit, respectively. The expression levels of GLUT1 and 3 were assessed by Western Blot assays and qRT-PCR. RESULTS: Our results showed that fluoride reduced the proliferation and survival rates of HT-22 cells. Cytomorphology showed that dendritic spines became shorter, cellular bodies became rounder, and adhesion decreased gradually after fluoride exposure. LDH results showed that fluoride exposure increased the membrane permeability of HT-22 cells. Transmission electron microscopy results showed that fluoride caused cells to swell, microvilli content decreased, cellular membrane integrity was damaged, chromatin was sparse, mitochondria ridge gap became wide, and microfilament and microtubule density decreased. Western Blot and qRT-PCR analyses showed that RhoA/ROCK/LIMK/Cofilin signaling pathway was activated by fluoride. F-actin/G-actin fluorescence intensity ratio remarkably increased in 0.125 and 0.5 mM NaF, and the mRNA expression of MAP2 was significantly decreased. Further studies showed that GLUT3 significantly increased in all fluoride groups, while GLUT1 decreased (p < 0.05). ATP contents remarkably increased, and ATP enzyme activity substantially decreased after NaF treatment with the control. CONCLUSION: Fluoride activates the RhoA/ROCK/LIMK/Cofilin signaling pathway, impairs the ultrastructure, and depresses the connection of synapses in HT-22 cells. Moreover, fluoride exposure affects the expression of glucose transporters (GLUT1 and 3) and ATP synthesis. Sum up fluoride exposure disrupts actin homeostasis, ultimately affecting structure, and function in HT-22 cells. These findings support our previous hypothesis and provide a new perspective on the neurotoxic mechanism of fluorosis.


Asunto(s)
Actinas , Fluoruros , Humanos , Animales , Fluoruros/toxicidad , Fluoruros/metabolismo , Actinas/metabolismo , Transportador de Glucosa de Tipo 1 , Citoesqueleto/metabolismo , Transducción de Señal/genética , Factores Despolimerizantes de la Actina/metabolismo , Adenosina Trifosfato/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
2.
Toxicol Ind Health ; 39(6): 325-335, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37122122

RESUMEN

Bisphenol A (BPA) has been reported to injure the developing and adult brain. However, the underlying mechanism still remains elusive. This study used neuro-2a cells as a cellular model to investigate the neurotoxic effects of BPA. Microtubule-associated protein 2 (MAP2) and tau protein maintain microtubule normal function and promote the normal development of the nervous system. Synaptophysin (SYP) and drebrin (Dbn) proteins are involved in regulating synaptic plasticity. Cells were exposed to the minimum essential medium (MEM), 0.01% (v/v) DMSO, and 150 µM BPA for 12, 24, or 36 h. Morphological analysis revealed that the cells in the BPA-treated groups shrank and collapsed compared with those in the control groups. CCK-8 and lactate dehydrogenase assay (LDH) assays showed that the mortality of neuro-2a cells increased as the BPA treatment time was prolonged. Ultrastructural analysis further revealed that cells demonstrated nucleolar swelling, dissolution of nuclear and mitochondrial membranes, and partial mitochondrial condensation following exposure to BPA. BPA also decreased the relative protein expression levels of MAP2, tau, and Dbn. Interestingly, the relative protein expression levels of SYP increased. These results indicated that BPA inhibited the proliferation and disrupted cytoskeleton and synaptic integrity of neuro-2a cells.


Asunto(s)
Disruptores Endocrinos , Neuronas , Citoesqueleto , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad
3.
Macromol Rapid Commun ; 43(22): e2200411, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35802865

RESUMEN

Developing organic solar cells based on a ternary active layer is one of the most effective approaches to improve their photovoltaic performance. However, limited success has been achieved in all-polymer solar cells (all-PSCs). In this study, a ternary all-PSC with improved efficiency and stability is realized by using J71 as the third component to adjust the host system of PBDB-T:PG1. The deeper highest occupied molecular orbital (HOMO) energy level of J71 downshifts the mixed HOMO energy levels of donors. The two polymer donors (PD s) have good miscibility and present Förster resonance energy transfer. When blended with PG1, the optimized morphology is obtained, showing enhanced crystallinity but meanwhile slightly reduced phase separation with improved exciton dissociation and collection efficiency, suppressed charge recombination, and reduced energy loss (0.55 eV). Combining the benefits mentioned above, the ternary all-PSC exhibits an excellent efficiency of 12.8% with simultaneously elevated open-circuit voltage (0.96 V), short-circuit current density (18.4 mA cm-2 ), and fill factor (72.2%). Moreover, the optimized ternary all-PSC shows improved storage and thermal stability. This study demonstrates that the utilization of a ternary all-polymer system based on two well-miscible PD s is an effective strategy to enhance the photovoltaic performance and stability of all-PSCs.

4.
Toxicol Ind Health ; 38(3): 151-161, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35261310

RESUMEN

Bisphenol A (BPA), which is used for the industrial production of polycarbonate plastics and epoxy resins, is found in many commercially available products. Plasticizer BPA produces chemical substances worldwide, and knowledge of its effects on humans and animals is increasing. In the present work, the morphology of cells was observed by optical microscopy and phalloidin staining to evaluate the toxic effect of BPA on Neuro-2a cells. Autophagy has an important role in the regulation of cell metabolism. To study the effect of BPA on the autophagy in Neuro-2a cells, the expression distribution of LC3 was detected by immunofluorescence, and the expression levels of p62 and Beclin1 were determined using western blot and quantitative real-time PCR (qRT-PCR), respectively. Optical microscopy and phalloidin staining revealed that the cells became rounded and small and that the dendritic spine of the cells were reduced at high BPA doses. Immunofluorescence analysis demonstrated that the expression of LC3 fluorescence intensity was weak at increasing BPA concentrations. Western blot results showed that the relative expression of protein p62 increased significantly and that the relative expression levels of the Beclin1 and the LC3 proteins significantly decreased with increasing BPA concentration. qRT-PCR results showed that the relative expression level of autophagy-related p62 mRNA increased significantly and that the relative expression level of Beclin1 mRNA decreased significantly with increasing BPA concentration. The above results indicated that BPA treatment exerted dose-dependent toxic effects on Neuro-2a cells, and BPA inhibited the autophagy level of Neuro-2a cells, thereby providing a new perspective in studying the toxic effect of BPA on Neuro-2a cells.


Asunto(s)
Compuestos de Bencidrilo , Fenoles , Animales , Autofagia , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Plastificantes
5.
Anal Chem ; 93(12): 5005-5008, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33724781

RESUMEN

We used online secondary electrospray ionization mass spectrometry to measure venlafaxine (VEN), a nonvolatile drug, in the exhaled air of mice intraperitoneally treated with VEN. The breath pharmacokinetic (PK) profile of VEN was recorded, which was in good agreement with that of the blood. Combined with online collection of exhaled breath particles (EBPs), it was shown that VEN existed as part of EBPs rather than gas molecules in the breath. Linear free-energy relationship analysis confirmed that almost completely ionized VEN at physiological conditions unlikely partition from the lung lining fluid (LLF) into breath air. This implies that the occurrence of VEN in exhaled air accompanies the formation of EBPs from the LLF. By comparison with the low breath signals of VEN metabolites, passive membrane permeability and lung/blood partition coefficient are suggested as the main influencing factors for the levels of drugs in the breath. This study advances our knowledge on the mechanism by which nonvolatile drugs are transferred from blood into exhaled breath, providing guidance for breath test-based therapeutic drug monitoring.


Asunto(s)
Espiración , Preparaciones Farmacéuticas , Animales , Pruebas Respiratorias , Monitoreo de Drogas , Ratones , Espectrometría de Masa por Ionización de Electrospray
6.
Environ Sci Technol ; 55(18): 12414-12423, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34468124

RESUMEN

Understanding the transformation of graphitic carbon nitride (g-C3N4) is essential to assess nanomaterial robustness and environmental risks. Using an integrated experimental and simulation approach, our work has demonstrated that the photoinduced hole (h+) on g-C3N4 nanosheets significantly enhances nanomaterial decomposition under •OH attack. Two g-C3N4 nanosheet samples D and M2 were synthesized, among which M2 had more pores, defects, and edges, and they were subjected to treatments with •OH alone and both •OH and h+. Both D and M2 were oxidized and released nitrate and soluble organic fragments, and M2 was more susceptible to oxidation. Particularly, h+ increased the nitrate release rate by 3.37-6.33 times even though the steady-state concentration of •OH was similar. Molecular simulations highlighted that •OH only attacked a limited number of edge-site heptazines on g-C3N4 nanosheets and resulted in peripheral etching and slow degradation, whereas h+ decreased the activation energy barrier of C-N bond breaking between heptazines, shifted the degradation pathway to bulk fragmentation, and thus led to much faster degradation. This discovery not only sheds light on the unique environmental transformation of emerging photoreactive nanomaterials but also provides guidelines for designing robust nanomaterials for engineering applications.


Asunto(s)
Grafito , Nanoestructuras , Compuestos de Nitrógeno
7.
J Environ Sci (China) ; 87: 10-23, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31791484

RESUMEN

Five biochars derived from lotus seedpod (LSP) were applied to examine and compare the adsorption capacity of 17ß-estradiol (E2) from aqueous solution. The effect of KOH activation and the order of activation steps on material properties were discussed. The effect of contact time, initial concentration, pH, ionic strength and humic acid on E2 adsorption were investigated in a batch adsorption process. Experimental results demonstrated that the pseudo second-order model fitted the experimental data best and that adsorption equilibrium was reached within 20 hr. The efficiency of E2 removal increased with increasing E2 concentration and decreased with the increase of ionic strength. E2 adsorption on LSP-derived biochar (BCs) was influenced little by humic acid, and slightly affected by the solution pH when its value ranged from 4.0 to 9.0, but considerably affected at pH 10.0. Low environmental temperature is favorable for E2 adsorption. Chemisorption, π-π interactions, monolayer adsorption and electrostatic interaction are the possible adsorption mechanisms. Comparative studies indicated that KOH activation and the order of activation steps had significant impacts on the material. Post-treated biochar exhibited better adsorption capacity for E2 than direct treated, pre-treated, and raw LSP biochar. Pyrolyzed biochar at higher temperature improved E2 removal. The excellent performance of BCs in removing E2 suggested that BCs have potential in E2 treatment and that the biochar directly treated by KOH would be a good choice for the treatment of E2 in aqueous solution, with its advantages of good efficiency and simple technology.


Asunto(s)
Estradiol/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Carbón Orgánico , Calor , Sustancias Húmicas , Concentración de Iones de Hidrógeno , Hidróxidos , Cinética , Lotus , Concentración Osmolar , Compuestos de Potasio , Semillas , Temperatura
8.
Angew Chem Int Ed Engl ; 59(45): 19835-19840, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-32666653

RESUMEN

A non-conjugated polymer acceptor PF1-TS4 was firstly synthesized by embedding a thioalkyl segment in the mainchain, which shows excellent photophysical properties on par with a fully conjugated polymer, with a low optical band gap of 1.58 eV and a high absorption coefficient >105  cm-1 , a high LUMO level of -3.89 eV, and suitable crystallinity. Matched with the polymer donor PM6, the PF1-TS4-based all-PSC achieved a power conversion efficiency (PCE) of 8.63 %, which is ≈45 % higher than that of a device based on the small molecule acceptor counterpart IDIC16. Moreover, the PF1-TS4-based all-PSC has good thermal stability with ≈70 % of its initial PCE retained after being stored at 85 °C for 180 h, while the IDIC16-based device only retained ≈50 % of its initial PCE when stored at 85 °C for only 18 h. Our work provides a new strategy to develop efficient polymer acceptor materials by linkage of conjugated units with non-conjugated thioalkyl segments.

9.
Environ Toxicol ; 34(4): 469-475, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30614199

RESUMEN

Cadmium (Cd) is considered a possible etiological factor in neurodegenerative diseases. However, the exact mechanism by which Cd induces neurotoxicity is not well elucidated. In this study, Neuro-2a cells were treated with 0, 10, 20, and 40 µM cadmium chloride for 24 hours to investigate the effects of Cd on the cytoskeleton of nerve cells. MTT assay and ELISA assay were used to examine cell viability and release of lactate dehydrogenase (LDH) from cells, respectively. Results showed that Cd reduced cell viability and increased the release of LDH in a dose-dependent manner (P < 0.05). The morphology of treated cell was damaged as indicated by cell collapse and dimensionality reduction. Moreover, the axonal spines and normal features of Cd-treated neurons disappeared. We checked the ultrastructure of Neuro-2a cells and found that Cd-induced swelling, membrane damage, overflow of cytoplasm contents, and cell fragmentation. Damaged mitochondria, expanded endoplasmic reticulum, and abnormal microfilaments were found in Cd-treated cells rather than in untreated cells. Compared with the control group, the relative release of glutamate in the supernatant after Cd treatment was reduced, indicating that Cd exposure could reduce the release of glutamate by inhibiting the function of nerve-2a cells. Cd decreased the mRNA and protein expression levels of cytoskeletal proteins including DBN, SYP, and TAU, which might promote cytoskeleton alterations in Cd-treated cells. In conclusion, Cd-induced actin cytoskeleton alterations and dysfunction of cultured neurons. The results of the present study provide new insights for the investigation of Cd-induced neurotoxicity.


Asunto(s)
Citoesqueleto de Actina/efectos de los fármacos , Cadmio/toxicidad , Contaminantes Ambientales/toxicidad , Neuronas/efectos de los fármacos , Citoesqueleto de Actina/ultraestructura , Animales , Axones/efectos de los fármacos , Axones/ultraestructura , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ratones , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Neuronas/ultraestructura , Síndromes de Neurotoxicidad/patología
10.
Asian-Australas J Anim Sci ; 29(10): 1392-7, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26954226

RESUMEN

Guanine nucleotide-binding protein subunit alpha-s (Gnαs) is a small subunit of the G protein-couple signaling pathway, which is involved in the formation of coat color. The expression level and distribution of Gnαs were detected by quantitative real-time-polymerase chain reaction (qPCR), western blot, and immunohistochemistry to investigate the underlying mechanisms of coat color in white and black skin tissues of mice. qPCR and western blot results suggested that Gnαs was expressed at significantly higher levels in black mice compared with that of white mice, and transcripts and protein possessed the same expression in both colors. Immunohistochemistry demonstrated Gnαs staining in the root sheath and dermal papilla in hair follicle of mice skins. The results indicated that the Gnαs gene was expressed in both white and black skin tissues, and the expression level of Gnαs in the two types of color was different. Therefore, Gnαs may be involved in the coat color formation in mice.

11.
Anim Biosci ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38754850

RESUMEN

Objective: Coat color is an important characteristic and economic trait in domestic sheep. In this study, we explored the potential mechanisms and the signaling pathways involved in coat color regulation for sheep. Methods: Isobaric tags for relative and absolute quantification (iTRAQ) technology was used to catalog global protein expression profiles in skin of sheep with black versus white coat color. Immunofluorescence was used to observe the expression localization of differential protein. Western blot and quantitative real time polymerase chain reaction (qRT-PCR) were used to evaluate their role in the coat color formation of sheep. Results: A total of 136 differential proteins were obtained in different coat colors, including 101 up-regulated and 35 down-regulated. Pigmentation function entries were enriched through GO annotation. Tyrosine metabolism and platelet activation signaling pathway were extracted by KEGG analysis. APOA1 (Apolipoprotein A-1) and FGA (Fibrinogen alpha chain) were found to be critical differential proteins by the interaction of differential proteins in the direct-interaction network diagram. Strikingly, twenty candidate differential proteins were screened, from which ACTB (Beta-actin) protein showed higher expression in white sheep skin, while ALB (albumin), APOA1 MAOA (Amine oxidase) and FGA proteins showed higher expression in black sheep skin, which validated by immunofluorescence, western blot and qRT-PCR. Conclusion: Our studies identified several novel proteins that may involved in the coat color formation of sheep. The white and black sheep skin proteome profiles obtained provide a valuable resource for future research to understand the network of protein expression controlling skin physiology and melanogenesis in sheep.

12.
Anim Biosci ; 36(9): 1367-1375, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37402463

RESUMEN

OBJECTIVE: Pigment production and distribution are controlled through multiple proteins, resulting in different coat color phenotypes of sheep. METHODS: The expression distribution of vimentin (VIM) and transthyretin (TTR) in white and black sheep skins was detected by liquid chromatography-electrospray ionization tandem MS (LC-ESI-MS/MS), gene ontology (GO) statistics, immunohistochemistry, Western blot, and quantitative real time polymerase chain reaction (qRT-PCR) to evaluate their role in the coat color formation of sheep. RESULTS: LC-ESI-MS/MS results showed VIM and TTR proteins in white and black skin tissues of sheep. Meanwhile, GO functional annotation analysis suggested that VIM and TTR proteins were mainly concentrated in cellular components and biological process, respectively. Further research confirmed that VIM and TTR proteins were expressed at significantly higher levels in black sheep skins than in white sheep skins by Western blot, respectively. Immunohistochemistry notably detected VIM and TTR in hair follicle, dermal papilla, and outer root sheath of white and black sheep skins. qRT-PCR results also revealed that the expression of VIM and TTR mRNAs was higher in black sheep skins than in white sheep skins. CONCLUSION: The expression of VIM and TTR were higher in black sheep skins than in white sheep skins and the transcription and translation were unanimous in this study. VIM and TTR proteins were expressed in hair follicles of white and black sheep skins. These results suggested that VIM and TTR were involved in the coat color formation of sheep.

13.
Acta Histochem ; 125(3): 151999, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36905872

RESUMEN

Fluoride compounds are abundant and widely distributed in the environment at various concentrations, which can seriously injure the human body. In this study, we aim to evaluate the effects of excessive fluoride exposure on the liver, kidney, and heart tissues of healthy female Xenopus laevis by administering NaF (0, 100, and 200 mg/L) in drinking water for 90 days. The expression level of procaspase-8, cleaved-caspase-8, and procaspase-3 proteins were determined by Western blot. Compared with the control group, the group exposed to NaF exhibited expression levels of procaspase-8, cleaved-caspase-8, and procaspase-3 proteins that were considerably upregulated at a concentration of 200 mg/L in the liver and kidney. The cleaved-caspase-8 protein expression in the group exposed to a high concentration of NaF was lower than that in the control group in heart. Histopathological results by hematoxylin and eosin staining showed that excessive NaF exposure caused necrosis of hepatocytes and vacuolization degeneration. Granular degeneration and necrosis in renal tubular epithelial cells were also observed. Moreover, hypertrophy of myocardial cells, atrophy of myocardial fibers and disorder of myocardial fibers were detected. These results demonstrated that NaF-induced apoptosis and the mediated death receptor pathway activation ultimately damaged the liver and kidney tissues. This finding offers a fresh perspective on the effects of F-induced apoptosis in X. laevis.


Asunto(s)
Apoptosis , Fluoruros , Animales , Femenino , Humanos , Fluoruros/metabolismo , Fluoruros/farmacología , Xenopus laevis/metabolismo , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Caspasa 8/farmacología , Riñón/metabolismo , Hígado/metabolismo , Transducción de Señal , Necrosis
14.
Toxics ; 11(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38133393

RESUMEN

Florfenicol (FLO) has been shown to elicit diverse toxic effects in plants, insects, and mammals. Previously, our investigations revealed that FLO induced abnormal cardiac development and early embryonic mortality in chicken embryos. However, the effect of FLO on mitochondrial responses in stem cells remains unclear. In this study, we show that FLO significantly diminishes proliferation viability and obstructs the directed differentiation of P19 stem cells (P19SCs) into cardiomyocytes. Proteomic analysis revealed 148 differentially expressed proteins in response to FLO. Functional analysis has pinpointed FLO interference with biological processes associated with oxidative phosphorylation within the mitochondria. In alignment with the results of proteomic analysis, we confirmed that FLO inhibits the expression of both nuclear DNA-encoded and mitochondrial DNA-encoded subunits of the electron transport chain. Subsequent experiments demonstrated that FLO disrupts mitochondrial dynamics and induces the mitochondrial unfolded protein response to maintain mitochondrial homeostasis. These findings collectively highlight the significance of mitochondrial dynamics and the mitochondrial unfolded protein response to mediate the decreased proliferation viability and directed differentiation potential in P19SCs treated with FLO. In conclusion, this study provides a comprehensive overview of mitochondrial responses to FLO-induced cytotoxicity and enhances our understandings of the molecular mechanisms underlying FLO-induced embryonic toxicity.

15.
iScience ; 25(6): 104403, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35663019

RESUMEN

Environmental pollution caused by petroleum hydrocarbons is being paid more and more attention worldwide. Surfactants are able to improve the solubility of petroleum hydrocarbons, but their effects on petroleum hydrocarbon degradation in composting systems are still unclear. In this study, the effects on microbial community succession were investigated by adding petroleum hydrocarbons and rhamnolipids during composting of organic wastes. The results showed that the compost and the addition of rhamnolipids could effectively reduce the petroleum hydrocarbon content with an efficiency of 73.52%, compared to 53.81% for the treatment without addition. Network analyses and Structural Equation Model suggested that there were multiple potential petroleum degraders microbes that might be regulated by nitrogen. The findings in this study can also provide an implication for the treatment of petroleum hydrocarbon pollutants from oil-polluted soil, and the technology can be potentially applied on an industrial scale in practice.

16.
J Hazard Mater ; 434: 128932, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35460998

RESUMEN

Both sulfonamides (SAs) and copper (Cu(II)) were frequently detected together in swine wastewater. In this study, the regulation of Cu(II) on SAs adsorption and release of dissolved organic matters (DOMs) by fungi-microalgae pellets (FM-pellets) were investigated. Aspergillus oryzae pellets were prepared for combination with Chlorella vulgaris and the optimal conditions were at agitation speed of 130 rpm, fungi to microalgae ratio of 10:1 and the combined time of 3 h with the highest combination efficiency of 98.65%. The results showed that adsorption was the main mechanism for SAs removal. FM-pellets exhibited a high SAs adsorption potential within 6 h, and the adsorption capacity of sulfamethazine (SMZ), sulfamonomethoxine (SMM) and sulfamethoxazole (SMX) was 1.07, 0.94 and 1.67 mg/g, respectively. Furthermore, the removal of SMX, SMZ and SMM was greatly promoted from 62.31% to 85.21%, 58.71-67.91% and 64.17-80.31%, respectively, under the presence of 2 mg/L Cu(II) through ion exchange and adsorption bridging. DOMs were analyzed by the parallel factor (PARAFAC) to demonstrate the response mechanism of FM-pellets to Cu(II). Protein-like substances and NADH in DOMs released by FM-pellets formed complexes with Cu(II) to alleviate the damage on the organism. These findings provide new insights into the mechanism and response of Cu(II) in the removal of SAs by FM-pellets.


Asunto(s)
Chlorella vulgaris , Microalgas , Animales , Cobre , Materia Orgánica Disuelta , Hongos , Sulfametazina , Sulfametoxazol , Sulfanilamida , Sulfonamidas , Porcinos
17.
Environ Sci Pollut Res Int ; 29(39): 58927-58935, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35377123

RESUMEN

Lead (Pb) is a widespread environmental heavy metal that can damage the cerebral cortex and hippocampus, and reduce the learning and memory ability in humans and animals. In vivo and in vitro models of acute lead acetate exposure were established to further study the mechanism of neurons injury. In this study, 4-week-old female Kunming mice were randomly divided into four groups. Each group was treated with distilled water with different Pb concentrations (0, 2.4, 4.8 and 9.6 mM). Mice were killed, and brain tissues were collected to detect the changes in synaptic plasticity-related protein expression. Furthermore, Neuro-2A cells were treated with 0, 5, 25 and 50 µM lead acetate for 24 h to observe the changes in cell morphology and function. In in vivo experiment, results showed that the expression levels of cytoskeleton-associated and neural function-related proteins decreased in a dose-dependent manner in the mouse brain tissue. In in vitro experiment, compared with the control group, Pb treatment groups were observed with smaller and round cells, decreased cell density and number of synapses. In the Pb exposure group, the survival rate of nerve cells decreased evidently, and the permeability of the cell membrane was increased. Western blot results showed that the expression of cytoskeleton-associated and function-related proteins decreased gradually with increased Pb exposure dose. Confocal laser scanning microscopy results revealed the morphological and volumetric changes in Neuro-2A cells, and a dose-dependent reduction in the number of axon and dendrites. These results suggested that abnormal neural structures and inhibiting expression of synaptic plasticity-related proteins might be the possible mechanisms of Pb-induced mental retardation in human and animals, thereby laying a foundation for the molecular mechanism of Pb neurotoxicity.


Asunto(s)
Plomo , Síndromes de Neurotoxicidad , Acetatos/metabolismo , Animales , Femenino , Hipocampo/metabolismo , Humanos , Plomo/metabolismo , Plomo/toxicidad , Ratones , Plasticidad Neuronal , Neuronas , Síndromes de Neurotoxicidad/metabolismo , Sinapsis
18.
Bioresour Technol ; 344(Pt B): 126227, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34743995

RESUMEN

Fungal pellet is an emerging material to collect oleaginous microalgae, but rare studies have noticed that harvested water is available resource for the next round of cultivation. To systematically optimize regrowth performances of microalgae Chlorella vulgaris, separated water after harvesting by fungi Aspergillus oryzae was prepared under different N/P ratios. The results showed that chlorophylls and enzymes were significantly affected by the proportion of N and P. Although nutrient deficiency was functioned as a stress factor to restrict carbohydrate and protein synthesis, lipid content was obviously increased by 12.69%. The percentage of saturated fatty acids associated with oxidation stability increased, while this part in fresh wastewater accounted for only 36.96%. The favorable biomass concentration (1.37 g/L) with the highest lipid yield (0.42 g/L) appeared in N/P of 6:1. More strikingly, suitable conditions could save 52.4% of cultivation costs. These experiments confirmed that reusing bioflocculated water could be effectively utilized for biodiesel production.


Asunto(s)
Chlorella vulgaris , Microalgas , Biocombustibles , Biomasa , Hongos , Nutrientes , Aguas Residuales , Agua
19.
Toxicology ; 470: 153138, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35219798

RESUMEN

Bisphenol A (2,2-bis(4'-hydroxyphenyl) propane, BPA) is a well-known endocrine-disrupting compound that is widely used in various daily products and exhibits embryonic development toxicity and genotoxicity. However, the affected signaling pathways involved in embryonic development especially the interactions of involved proteins remain unclear. In our previous study (Ge et al., 2021), BPA induces DNA damage and apoptosis in Xenopus embryos, resulting in multiple malformations of larvae. However, the signaling pathways induced for apoptosis response to DNA damage are still not well elucidated. Here, we systematically elucidated the enriched pathways affected by BPA and illustrated the interactions of involved proteins. Results indicated that BPA affected multiple embryonic development pathways including Hippo, TGF-ß, Wnt, and Notch pathways. Furthermore, the protein-protein interaction network suggested that the c-Abl/YAPY357/p73 pathway may play a key role in apoptosis induction in response to DNA damage. P19 embryonal carcinoma stem cells, as a developmental toxicity model, were treated with different BPA concentrations to establish an in vitro model to verify the role of the c-Abl/YAPY357/p73 pathway in apoptosis. BPA triggered DNA damage and significantly upregulated the expression levels of c-Abl, phosphorylated YAPY357, phosphorylated p73Y99, and cleaved caspase-3 protein (p < 0.05), thus decreasing cell viability and transcriptionally activating the p73 target genes Bax and Puma. These data suggested that BPA activated the c-Abl/YAPY357/p73 pathway in response to DNA damage. Imatinib, an inhibitor of tyrosine kinase c-Abl, significantly downregulated the elevated expression levels of p-YAPY357, p-p73Y99 and cleaved caspase-3 (p < 0.05) caused by BPA and then ameliorated the cell index of P19 cells in the BPA-treated group. Therefore, this substance restrained the phosphokinase activity of c-Abl and suppressed the c-Abl/YAPY357/p73 pathway. Results showed that the c-Abl/YAPY357/p73 pathway served as a mechanism for caspase-3 activation that induced the apoptosis response to DNA damage stress.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Nucleares , Apoptosis/genética , Compuestos de Bencidrilo , Caspasa 3/genética , Daño del ADN , Proteínas de Unión al ADN/genética , Células Madre de Carcinoma Embrionario/metabolismo , Proteínas Nucleares/genética , Fenoles , Proteína Tumoral p73/genética , Proteínas Supresoras de Tumor/metabolismo
20.
Front Pharmacol ; 13: 779664, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422703

RESUMEN

Florfenicol (FLO), which is widely used in veterinary clinics and aquaculture, can disrupt the protein synthesis of bacteria and mitochondria and, thus, lead to antibacterial and toxic effects in plants, insects, and mammals. FLO was found to repress chicken embryonic development and induce early embryonic death previously, but the underlying mechanism is not fully understood. Clarifying the mechanism of FLO-induced embryonic toxicity is important to the research and development of new drugs and the rational use of FLO to ensure human and animal health and ecological safety. In this study, the effects of FLO on pluripotency, proliferation, and differentiation were investigated in P19 stem cells (P19SCs). We also identified differentially expressed genes and performed bioinformatics analysis to obtain hub genes and conducted some functional analysis. FLO inhibited the proliferation and pluripotency of P19SCs and repressed the formation of embryoid bodies derived from P19SCs. A total of 2,396 DEGs were identified using RNA-Seq in FLO-treated P19SCs, and these genes were significantly enriched in biological processes, such as angiogenesis, embryonic organ development, and morphogenesis of organs. Kyoto encyclopedia of genes and genome-based pathway analysis also showed that five relevant pathways, especially the canonical Wnt pathway, were engaged in FLO-induced toxicity of pluripotent stem cells. We further analyzed modules and hub genes and found the involvement of ubiquitin-mediated proteolysis, DNA replication, and cell cycle machinery in regulating the pluripotency and proliferation of FLO-treated P19SCs. In summary, our data suggest that FLO disrupts the signaling transduction of pathways, especially the canonical Wnt pathway, and further inhibits the expression of target genes involved in regulating DNA replication, cell cycle, and pluripotency. This phenomenon leads to the inhibition of proliferation and differentiation in FLO-treated P19SCs. However, further experiments are required to validate our findings and elucidate the potential mechanisms underlying FLO-induced embryonic toxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA