Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 30(15): e202303895, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38198245

RESUMEN

To promote interfacial charge transfer process and accelerate surface water oxidation reaction kinetics for photoelectrochemical (PEC) water splitting over n-type Silicon (n-Si) based photoanodes, herein, starting with surface stabilized n-Si/CoOx , a NiOx /NiFeOOH composite overlayer was coated by atomic layer deposition and spray coating to fabricate the multilayer structured n-Si/CoOx /NiOx /NiFeOOH photoanode. Encouragingly, the obtained n-Si/CoOx /NiOx /NiFeOOH photoanode exhibits much increased PEC activity for water splitting, with onset potential cathodically shifted to ~0.96 V vs. RHE and photocurrent density increased to 22.6 mA cm-2 at 1.23 V vs. RHE for OER, as compared to n-Si/CoOx , even significantly surpassing the counterpart n-Si/CoOx /NiOx /FeOOH and n-Si/CoOx /NiOx /NiOOH photoanodes. Photophysical and electrochemical characterizations evidence that the deposited CoOx /NiOx /NiFeOOH composite overlayer would create large band bending and strong built-in electric field at the introduced cascading interfaces, thereby producing a large photovoltage of 650 mV to efficiently accelerate charge transfer from the n-Si substrate to the electrolyte for water oxidation. Furthermore, the surface oxygen vacancy enriched NiFeOOH overlayer could effectively catalyze the water oxidation reaction by thermodynamically reducing the energy barrier of rate determining step for OER.

2.
Angew Chem Int Ed Engl ; 59(2): 868-873, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31663218

RESUMEN

Red phosphorus is a promising photocatalyst with wide visible-light absorption up to 700 nm, but the fast charge recombination limits its photocatalytic hydrogen evolution reaction (HER) activity. Now, [001]-oriented Hittorf's phosphorus (HP) nanorods were successfully grown on polymeric carbon nitride (PCN) by a chemical vapor deposition strategy. Compared with the bare PCN and HP, the optimized PCN@HP hybrid exhibited a significantly enhanced photocatalytic activity, with HER rates reaching 33.2 and 17.5 µmol h-1 from pure water under simulated solar light and visible light irradiation, respectively. It was theoretically and experimentally indicated that the strong electronic coupling between PCN and [001]-oriented HP nanorods gave rise to the enhanced visible light absorption and the greatly accelerated photoinduced electron-hole separation and transfer, which benefited the photocatalytic HER performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA