Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.031
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 620(7972): 72-77, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37168015

RESUMEN

A recent study demonstrated near-ambient superconductivity in nitrogen-doped lutetium hydride1. This stimulated a worldwide interest in exploring room-temperature superconductivity at low pressures. Here, by using a high-pressure and high-temperature synthesis technique, we have obtained nitrogen-doped lutetium hydride (LuH2±xNy), which has a dark-blue colour and a structure with the space group [Formula: see text] as evidenced by X-ray diffraction. This structure is the same as that reported in ref. 1, with a slight difference in lattice constant. Raman spectroscopy of our samples also showed patterns similar to those observed in ref. 1. Energy-dispersive X-ray spectroscopy confirmed the presence of nitrogen in the samples. We observed a metallic behaviour from 350 K to 2 K at ambient pressure. On applying pressures from 2.1 GPa to 41 GPa, we observed a gradual colour change from dark blue to violet to pink-red. By measuring the resistance at pressures ranging from 0.4 GPa to 40.1 GPa, we observed a progressively improved metallic behaviour; however, superconductivity was not observed above 2 K. Temperature dependence of magnetization at high pressure shows a very weak positive signal between 100 K and 320 K, and the magnetization increases with an increase in magnetic field at 100 K. All of these are not expected for superconductivity above 100 K. Thus, we conclude the absence of near-ambient superconductivity in this nitrogen-doped lutetium hydride at pressures below 40.1 GPa.

2.
Mol Cell ; 77(3): 633-644.e5, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31836388

RESUMEN

Metastatic melanoma is an aggressive disease, despite recent improvements in therapy. Eradicating all melanoma cells even in drug-sensitive tumors is unsuccessful in patients because a subset of cells can transition to a slow-cycling state, rendering them resistant to most targeted therapy. It is still unclear what pathways define these subpopulations and promote this resistant phenotype. In the current study, we show that Wnt5A, a non-canonical Wnt ligand that drives a metastatic, therapy-resistant phenotype, stabilizes the half-life of p53 and uses p53 to initiate a slow-cycling state following stress (DNA damage, targeted therapy, and aging). Inhibiting p53 blocks the slow-cycling phenotype and sensitizes melanoma cells to BRAF/MEK inhibition. In vivo, this can be accomplished with a single dose of p53 inhibitor at the commencement of BRAF/MEK inhibitor therapy. These data suggest that taking the paradoxical approach of inhibiting rather than activating wild-type p53 may sensitize previously resistant metastatic melanoma cells to therapy.


Asunto(s)
Melanoma/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína Wnt-5a/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Melanoma/genética , Melanoma/patología , Terapia Molecular Dirigida , Mutación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Microambiente Tumoral/efectos de los fármacos , Proteína p53 Supresora de Tumor/fisiología
3.
EMBO Rep ; 25(4): 2015-2044, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480845

RESUMEN

Naive human embryonic stem cells (hESCs) that resemble the pre-implantation epiblasts are fueled by a combination of aerobic glycolysis and oxidative phosphorylation, but their mitochondrial regulators are poorly understood. Here we report that, proline dehydrogenase (PRODH), a mitochondria-localized proline metabolism enzyme, is dramatically upregulated in naive hESCs compared to their primed counterparts. The upregulation of PRODH is induced by a reduction in c-Myc expression that is dependent on PD0325901, a MEK inhibitor routinely present in naive hESC culture media. PRODH knockdown in naive hESCs significantly promoted mitochondrial oxidative phosphorylation (mtOXPHOS) and reactive oxygen species (ROS) production that triggered autophagy, DNA damage, and apoptosis. Remarkably, MitoQ, a mitochondria-targeted antioxidant, effectively restored the pluripotency and proliferation of PRODH-knockdown naive hESCs, indicating that PRODH maintains naive pluripotency by preventing excessive ROS production. Concomitantly, PRODH knockdown significantly slowed down the proteolytic degradation of multiple key mitochondrial electron transport chain complex proteins. Thus, we revealed a crucial role of PRODH in limiting mtOXPHOS and ROS production, and thereby safeguarding naive pluripotency of hESCs.


Asunto(s)
Fosforilación Oxidativa , Prolina Oxidasa , Humanos , Especies Reactivas de Oxígeno/metabolismo , Prolina Oxidasa/genética , Prolina Oxidasa/metabolismo , Mitocondrias/metabolismo , Apoptosis
4.
Proc Natl Acad Sci U S A ; 120(20): e2302407120, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155859

RESUMEN

Clarifying the reaction pathways at the solid-water interface and in bulk water solution is of great significance for the design of heterogeneous catalysts for selective oxidation of organic pollutants. However, achieving this goal is daunting because of the intricate interfacial reactions at the catalyst surface. Herein, we unravel the origin of the organic oxidation reactions with metal oxide catalysts, revealing that the radical-based advanced oxidation processes (AOPs) prevail in bulk water but not on the solid catalyst surfaces. We show that such differing reaction pathways widely exist in various chemical oxidation (e.g., high-valent Mn3+ and MnOX) and Fenton and Fenton-like catalytic oxidation (e.g., Fe2+ and FeOCl catalyzing H2O2, Co2+ and Co3O4 catalyzing persulfate) systems. Compared with the radical-based degradation and polymerization pathways of one-electron indirect AOP in homogeneous reactions, the heterogeneous catalysts provide unique surface properties to trigger surface-dependent coupling and polymerization pathways of a two-electron direct oxidative transfer process. These findings provide a fundamental understanding of catalytic organic oxidation processes at the solid-water interface, which could guide the design of heterogeneous nanocatalysts.

5.
Proc Natl Acad Sci U S A ; 120(24): e2219649120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276408

RESUMEN

How left-right (LR) asymmetry emerges in a patterning field along the anterior-posterior axis remains an unresolved problem in developmental biology. Left-biased Nodal emanating from the LR organizer propagates from posterior to anterior (PA) and establishes the LR pattern of the whole embryo. However, little is known about the regulatory mechanism of the PA spread of Nodal and its asymmetric activation in the forebrain. Here, we identify bilaterally expressed Follistatin (Fst) as a regulator blocking the propagation of the zebrafish Nodal ortholog Southpaw (Spaw) in the right lateral plate mesoderm (LPM), and restricting Spaw transmission in the left LPM to facilitate the establishment of a robust LR asymmetric Nodal patterning. In addition, Fst inhibits the Activin-Nodal signaling pathway in the forebrain thus preventing Nodal activation prior to the arrival, at a later time, of Spaw emanating from the left LPM. This contributes to the orderly propagation of asymmetric Nodal activation along the PA axis. The LR regulation function of Fst is further confirmed in chick and frog embryos. Overall, our results suggest that a robust LR patterning emerges by counteracting a Fst barrier formed along the PA axis.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Folistatina/genética , Folistatina/metabolismo , Tipificación del Cuerpo/genética , Factor de Crecimiento Transformador beta/metabolismo , Regulación del Desarrollo de la Expresión Génica
6.
PLoS Biol ; 20(11): e3001856, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36318514

RESUMEN

Feingold syndrome type 1, caused by loss-of-function of MYCN, is characterized by varied phenotypes including esophageal and duodenal atresia. However, no adequate model exists for studying the syndrome's pathological or molecular mechanisms, nor is there a treatment strategy. Here, we developed a zebrafish Feingold syndrome type 1 model with nonfunctional mycn, which had severe intestinal atresia. Single-cell RNA-seq identified a subcluster of intestinal cells that were highly sensitive to Mycn, and impaired cell proliferation decreased the overall number of intestinal cells in the mycn mutant fish. Bulk RNA-seq and metabolomic analysis showed that expression of ribosomal genes was down-regulated and that amino acid metabolism was abnormal. Northern blot and ribosomal profiling analysis showed abnormal rRNA processing and decreases in free 40S, 60S, and 80S ribosome particles, which led to impaired translation in the mutant. Besides, both Ribo-seq and western blot analysis showed that mTOR pathway was impaired in mycn mutant, and blocking mTOR pathway by rapamycin treatment can mimic the intestinal defect, and both L-leucine and Rheb, which can elevate translation via activating TOR pathway, could rescue the intestinal phenotype of mycn mutant. In summary, by this zebrafish Feingold syndrome type 1 model, we found that disturbance of ribosomal biogenesis and blockage of protein synthesis during development are primary causes of the intestinal defect in Feingold syndrome type 1. Importantly, our work suggests that leucine supplementation may be a feasible and easy treatment option for this disease.


Asunto(s)
Microcefalia , Pez Cebra , Animales , Proteína Proto-Oncogénica N-Myc , Pez Cebra/metabolismo , Microcefalia/genética , Serina-Treonina Quinasas TOR/metabolismo , Leucina
7.
Chem Soc Rev ; 53(9): 4490-4606, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38502087

RESUMEN

Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.


Asunto(s)
Materiales Biomiméticos , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Humanos , Animales , Biomineralización , Huesos/química , Huesos/metabolismo , Biomimética/métodos , Diente/química
8.
Cancer ; 130(S8): 1424-1434, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38217532

RESUMEN

BACKGROUND: Immunohistochemistry (IHC) is an essential technique in surgical and clinical pathology for detecting diagnostic, prognostic, and predictive biomarkers for personalized cancer therapy. However, the lack of standardization and reference controls results in poor reproducibility, and a reliable tool for IHC quantification is urgently required. The objective of this study was to describe a novel approach in which H3F3B (histone H3, family 3B) can be used as an internal reference standard to quantify protein expression levels using IHC. METHODS: The authors enrolled 89 patients who had human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC). They used a novel IHC-based assay to measure protein expression using H3F3B as the internal reference standard. H3F3B was uniformly expressed at the protein level in all tumor regions in cancer tissues. HER2 expression levels were measured with the H-score using HALO software. RESULTS: Kaplan-Meier analysis indicated that, among patients who had HER2-positive BC in The Cancer Genome Atlas data set and the authors' data set, the subgroup with low HER2 expression had a significantly better prognosis than the subgroup with high HER2 expression. Furthermore, the authors observed that HER2 expression levels were precisely evaluated using the proposed method, which can classify patients who are at higher risk of HER2-positive BC to receive trastuzumab-based adjuvant therapy. Dual-color IHC with H3F3B is an excellent tool for internal and external quality control of HER2 expression assays. CONCLUSIONS: The proposed IHC-based quantification method accurately assesses HER2 expression levels and provides insights for predicting clinical prognosis in patients with HER2-positive BC who receive trastuzumab-based adjuvant therapy.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Histonas , Inmunohistoquímica , Reproducibilidad de los Resultados , Receptor ErbB-2/genética , Trastuzumab/uso terapéutico , Estándares de Referencia , Biomarcadores de Tumor/metabolismo
9.
Biochem Biophys Res Commun ; 716: 150011, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704890

RESUMEN

Methionine adenosyltransferase 2 A (MAT2A) mediates the synthesis of methyl donor S-Adenosylmethionine (SAM), providing raw materials for methylation reactions in cells. MAT2A inhibitors are currently used for the treatment of tumors with methylthioadenosine phosphorylase (MTAP) deficiency in clinical research. Methyltransferase like 3 (METTL3) catalyzes N6-methyladenosine (m6A) modification of mRNA in mammalian cells using SAM as the substrate which has been shown to affect the tumorigenesis of non-small cell lung cancer (NSCLC) from multiple perspectives. MAT2A-induced SAM depletion may have the potential to inhibit the methyl transfer function of METTL3. Therefore, in order to expand the applicability of inhibitors, improve anti-tumor effects and reduce toxicity, the combinational effect of MAT2A inhibitor AG-270 and METTL3 inhibitor STM2457 was evaluated in NSCLC. The results showed that this combination induced cell apoptosis rather than cell cycle arrest, which was non-tissue-specific and was independent of MTAP expression status, resulting in a significant synergistic anti-tumor effect. We further elucidated that the combination-induced enhanced apoptosis was associated with the decreased m6A level, leading to downregulation of PI3K/AKT protein, ultimately activating the apoptosis-related proteins. Unexpectedly, although combination therapy resulted in metabolic recombination, no significant change in methionine metabolic metabolites was found. More importantly, the combination also exerted synergistic effects in vivo. In summary, the combination of MAT2A inhibitor and METTL3 inhibitor showed synergistic effects both in vivo and in vitro, which laid a theoretical foundation for expanding the clinical application research of the two types of drugs.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Sinergismo Farmacológico , Neoplasias Pulmonares , Metionina Adenosiltransferasa , Metiltransferasas , Metionina Adenosiltransferasa/metabolismo , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Apoptosis/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Animales , Metiltransferasas/metabolismo , Metiltransferasas/antagonistas & inhibidores , Línea Celular Tumoral , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Ratones , Ratones Desnudos , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Small ; 20(23): e2307808, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38133509

RESUMEN

Transition metal-based catalysts possess high catalytic activity for oxygen evolution reaction (OER). However, the preparation of high-performance OER electrocatalysts using simple strategies with a low cost still faces a major challenge. Herein, this work presents an innovative, in situ-induced preparation of the Fe2O3, FeS, and NiS nanoparticles, supported on carbon blacks (CBs) (denoted as Fe2O3-Fe(Ni)S/C) as a high-efficiency oxygen evolution electrocatalyst by employing biomineralization. Biomineralization, a simple synthesis strategy, demonstrates a huge advantage in controlling the size of the Fe2O3 and Fe(Ni)S nanoparticles, as well as achieving uniform nanoparticle distribution on carbon blacks. It is found that the electrocatalyst Fe2O3-Fe(Ni)S/C-200 shows a good OER electrocatalytic activity with a small loading capacity, and it has a small overpotential and Tafel slope in 1 m KOH solution with values of 264 mV and 42 mV dec-1, respectively, at a current density of 10 mA cm-2. Additionally, it presents good electrochemical stability for over 24 h. The remarkable and robust electrocatalytic performance of Fe2O3-Fe(Ni)S/C-200 is attributed to the synergistic effect of Fe2O3, FeS, and doped-Ni species as well as its distinct 3D spherical structure. This approach indicates the promising applications of biomineralization for the bio-preparation of functional materials and energy conversion.

11.
Small ; 20(8): e2307547, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37814367

RESUMEN

The sluggish four-electron oxygen evolving reaction is one of the key limitations of photoelectrochemical water decomposition. Optimizing the binding of active sites to oxygen in water and promoting the conversion of *O to *OOH are the key to enhancing oxygen evolution reaction. In this work, W-doped Cu2 V2 O7 (CVO) constructs corner-sharing tetrahedrally coordinated W-V dual active sites to induce the generation of electron deficiency active centers, promote the adsorption of ─OH, and accelerate the transformation of *O to *OOH for water splitting. The photocurrent obtained by the W-modified CVO photoanode is 0.97 mA cm-2 at 1.23 V versus RHE, which is much superior to that of the reported CVO. Experimental and theoretical results show that the excellent catalytic performance may be attributed to the formation of synergistic dual active sites between W and V atoms, and the introduction of W ions reduces the charge migration distance and prolongs the lifetime of photogenerated carriers. Meanwhile, the electronic structure in the center of the d-band is modulated, which leads to the redistribution of the electron density in CVO and lowers the energy barrier for the conversion of the rate-limiting step *O to *OOH.

12.
Small ; 20(15): e2307096, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37994304

RESUMEN

Skin wounds accompanied by bacterial infections threaten human health, and conventional antibiotic treatments are ineffective for drug-resistant bacterial infections and chronically infected wounds. The development of non-antibiotic-dependent therapeutics is highly desired but remains a challenging issue. Recently, 2D silicene nanosheets with considerable biocompatibility, biodegradability, and photothermal-conversion performance have received increasing attention in biomedical fields. Herein, copper-containing nanoparticles-loaded silicene (Cu2.8O@silicene-BSA) nanosheets with triple enzyme mimicry catalytic (peroxidase, catalase, and oxidase-like) activities and photothermal function are rationally designed and fabricated for efficient bacterial elimination, angiogenesis promotion, and accelerated wound healing. Cu2.8O@silicene-BSA nanosheets display excellent antibacterial activity through synergistic effects of reactive oxygen species generated from multiple catalytic reactions, intrinsic bactericidal activity of released Cu2+ ions, and photothermal effects, achieving high antibacterial efficiencies on methicillin-resistant Staphylococcus aureus (MRSA) of 99.1 ± 0.7% in vitro and 97.2 ± 1.6% in vivo. In addition, Cu2.8O@silicene-BSA nanosheets exhibit high biocompatibility for promoting human umbilical vein endothelial cell (HUVEC) proliferation and angiogenic differentiation. In vivo experiments reveal that Cu2.8O@silicene-BSA nanosheets with synergistic photothermal/chemodynamic therapeutics effectively accelerate MRSA-infected wound healing by eliminating bacteria, alleviating inflammation, boosting collagen deposition, and promoting angiogenesis. This research presents a promising strategy to engineer photothermal-assisted nanozyme catalysis for bacteria-invaded wound healing.


Asunto(s)
Infecciones Bacterianas , Staphylococcus aureus Resistente a Meticilina , Humanos , Cobre , Bacterias , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
13.
J Med Virol ; 96(6): e29731, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888065

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) is associated with a high death rate and lacks a targeted therapy plan. The ratio of blood urea nitrogen to albumin, known as BAR, is a valuable method for assessing the outlook of various infectious diseases. The objective of this research was to evaluate the effectiveness of BAR in forecasting the outcome of individuals with SFTS. Four hundred and thirty-seven patients with SFTS from two clinical centers were included in this study according to inclusion and exclusion criteria. Clinical characteristics and test parameters of SFTS patients were analyzed between survival and fatal groups. Least absolute shrinkage and selection operator (LASSO) regression and Cox regression suggested that BAR might serve as a standalone prognostic indicator for patients with SFTS in the initial phase (hazard ratio = 18.669, 95% confidence interval [CI]: 8.558-40.725, p < 0.001). And BAR had a better predictive effectiveness in clinical outcomes in patients with SFTS with an AUC of 0.832 (95% CI: 0.788-0.876, p < 0.001), a cutoff value of 0.19, a sensitivity of 0.812, and a specificity of 0.726 compared to C-reactive protein, procalcitonin, and platelet to lymphocyte ratio via receiver operating characteristic curve. KM (Kaplan Meier) curves demonstrated that high level of BAR was associated with poor survival condition in patients with SFTS. Furthermore, the high level of BAR was associated with long hospital stays and test paraments of kidney, liver, and coagulation function in survival patients. So, BAR could be used as a promising early warning biomarker of adverse outcomes in patients with SFTS.


Asunto(s)
Nitrógeno de la Urea Sanguínea , Síndrome de Trombocitopenia Febril Grave , Humanos , Femenino , Masculino , Persona de Mediana Edad , Síndrome de Trombocitopenia Febril Grave/mortalidad , Síndrome de Trombocitopenia Febril Grave/sangre , Síndrome de Trombocitopenia Febril Grave/diagnóstico , Síndrome de Trombocitopenia Febril Grave/virología , Anciano , Pronóstico , Biomarcadores/sangre , Estudios Retrospectivos , Adulto , Anciano de 80 o más Años
14.
Ann Neurol ; 93(6): 1069-1081, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36843248

RESUMEN

OBJECTIVE: To investigate aquaporin-4 antibody (AQP4-IgG) dynamics and relapse risk in patients with seropositive neuromyelitis optica spectrum disorder treated with immunosuppressants. METHODS: This observational cohort study with prospectively collected data included 400 neuromyelitis optica spectrum disorder patients seropositive for AQP4-IgG and treated with immunosuppressants. Serum AQP4-IgG was detected by fixed cell-based assay every 6 months. RESULTS: After treatment with immunosuppressants, 128 patients became AQP4-IgG seronegative. The median time to become seronegative for 400 patients was 76.4 months (61.4 months, NA). Among those patients with negative change of AQP4-IgG, the mean annualized relapse rate significantly decreased after patients became seronegative (0.20 vs 0.77, p < 0.001), and a positive correlation was observed between time to become seronegative and relapse (OR 1.018, 95% CI 1.001-1.035, p < 0.05). Independent risk factors for AQP4-IgG becoming seronegative were older age at onset, initiation of immunosuppressants at onset, and shorter disease duration before maintenance therapy. Independent risk factors for relapse included younger age (≤46.4 years) at onset, poly-system involvement in the first attack, and unchanged or increased AQP4-IgG titer. The relapse risk was not associated with sex, combination with connective tissue disease, seropositivity for systemic autoimmune antibodies, or incomplete recovery from the first attack. INTERPRETATION: Patients with younger age at onset, poly-system involvement in the first attack, and unchanged or increased titer of AQP4-IgG are most likely to experience relapse under treatment with immunosuppressants. Time to AQP4-IgG becoming seronegative and change of AQP4-IgG titer may become the surrogate efficacy biomarkers in clinical trials. ANN NEUROL 2023;93:1069-1081.


Asunto(s)
Neuromielitis Óptica , Humanos , Persona de Mediana Edad , Inmunosupresores/uso terapéutico , Acuaporina 4 , Autoanticuerpos , Enfermedad Crónica , Biomarcadores , Recurrencia , Inmunoglobulina G
15.
Biomacromolecules ; 25(5): 2980-2989, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38587905

RESUMEN

We developed a supramolecular system for codelivery of doxorubicin (Dox) and p53 gene based on a ß-CD-containing star-shaped cationic polymer. First, a star-shaped cationic polymer consisting of a ß-CD core and 3 arms of oligoethylenimine (OEI), named CD-OEI, was used to form a supramolecular inclusion complex with hydrophobic Dox. The CD-OEI/Dox complex was subsequently used to condense plasmid DNA via electrostatic interactions to form CD-OEI/Dox/DNA polyplex nanoparticles with positive surface charges that enhanced the cellular uptake of both Dox and DNA. This supramolecular drug and gene codelivery system showed high gene transfection efficiency and effective protein expression in cancer cells. The codelivery of Dox and DNA encoding the p53 gene resulted in reduced cell viability and enhanced antitumor effects at low Dox concentrations. With its enhanced cellular uptake and anticancer efficacy, the system holds promise as a delivery carrier for potential combination cancer therapies.


Asunto(s)
Doxorrubicina , Nanopartículas , Electricidad Estática , Proteína p53 Supresora de Tumor , Humanos , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administración & dosificación , beta-Ciclodextrinas/química , Supervivencia Celular/efectos de los fármacos , ADN/química , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Técnicas de Transferencia de Gen , Nanopartículas/química , Proteína p53 Supresora de Tumor/genética
16.
Cancer Control ; 31: 10732748241247170, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662732

RESUMEN

Among the post-transcriptional modifications, m6A RNA methylation has gained significant research interest due to its critical role in regulating transcriptional expression. This modification affects RNA metabolism in several ways, including processing, nuclear export, translation, and decay, making it one of the most abundant transcriptional modifications and a crucial regulator of gene expression. The dysregulation of m6A RNA methylation-related proteins in many tumors has been shown to lead to the upregulation of oncoprotein expression, tumor initiation, proliferation, cancer cell progression, and metastasis.Although the impact of m6A RNA methylation on cancer cell growth and proliferation has been extensively studied, its role in DNA repair processes, which are crucial to the pathogenesis of various diseases, including cancer, remains unclear. However, recent studies have shown accumulating evidence that m6A RNA methylation significantly affects DNA repair processes and may play a role in cancer drug resistance. Therefore, a comprehensive literature review is necessary to explore the potential biological role of m6A-modified DNA repair processes in human cancer and cancer drug resistance.In conclusion, m6A RNA methylation is a crucial regulator of gene expression and a potential player in cancer development and drug resistance. Its dysregulation in many tumors leads to the upregulation of oncoprotein expression and tumor progression. Furthermore, the impact of m6A RNA methylation on DNA repair processes, although unclear, may play a crucial role in cancer drug resistance. Therefore, further studies are warranted to better understand the potential biological role of m6A-modified DNA repair processes in human cancer and cancer drug resistance.


Asunto(s)
Daño del ADN , Reparación del ADN , Resistencia a Antineoplásicos , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Quimioradioterapia/métodos , Regulación Neoplásica de la Expresión Génica
17.
Phys Chem Chem Phys ; 26(15): 11429-11435, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38563510

RESUMEN

The deposition and intercalation of metal atoms can induce superconductivity in monolayer and bilayer graphenes. For example, it has been experimentally proved that Li-deposited graphene is a superconductor with critical temperature Tc of 5.9 K, Ca-intercalated bilayer graphene C6CaC6 and K-intercalated epitaxial bilayer graphene C8KC8 are superconductors with Tc of 2-4 K and 3.6 K, respectively. However, the Tc of them are relatively low. To obtain higher Tc in graphene-based superconductors, here we predict a new Ca-intercalated bilayer graphene C2CaC2, which shows higher Ca concentration than the C6CaC6. It is proved to be thermodynamically and dynamically stable. The electronic structure, electron-phonon coupling (EPC) and superconductivity of C2CaC2 are investigated based on first-principles calculations. The EPC of C2CaC2 mainly comes from the coupling between the electrons of C-pz orbital and the high- and low-frequency vibration modes of C atoms. The calculated EPC constant λ of C2CaC2 is 0.75, and the superconducting Tc is 18.9 K, which is much higher than other metal-intercalated bilayer graphenes. By further applying -4% biaxial compressive strain to C2CaC2, the Tc can be boosted to 26.6 K. Thus, the predicted C2CaC2 provides a new platform for realizing superconductivity with the highest Tc in bilayer graphenes.

18.
Acta Pharmacol Sin ; 45(7): 1381-1392, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38514863

RESUMEN

Status epilepticus (SE), a serious and often life-threatening medical emergency, is characterized by abnormally prolonged seizures. It is not effectively managed by present first-line anti-seizure medications and could readily develop into drug resistance without timely treatment. In this study, we highlight the therapeutic potential of CZL80, a small molecule that inhibits caspase-1, in SE termination and its related mechanisms. We found that delayed treatment of diazepam (0.5 h) easily induces resistance in kainic acid (KA)-induced SE. CZL80 dose-dependently terminated diazepam-resistant SE, extending the therapeutic time window to 3 h following SE, and also protected against neuronal damage. Interestingly, the effect of CZL80 on SE termination was model-dependent, as evidenced by ineffectiveness in the pilocarpine-induced SE. Further, we found that CZL80 did not terminate KA-induced SE in Caspase-1-/- mice but partially terminated SE in IL1R1-/- mice, suggesting the SE termination effect of CZL80 was dependent on the caspase-1, but not entirely through the downstream IL-1ß pathway. Furthermore, in vivo calcium fiber photometry revealed that CZL80 completely reversed the neuroinflammation-augmented glutamatergic transmission in SE. Together, our results demonstrate that caspase-1 inhibitor CZL80 terminates diazepam-resistant SE by blocking glutamatergic transmission. This may be of great therapeutic significance for the clinical treatment of refractory SE.


Asunto(s)
Anticonvulsivantes , Caspasa 1 , Ratones Endogámicos C57BL , Estado Epiléptico , Animales , Estado Epiléptico/tratamiento farmacológico , Caspasa 1/metabolismo , Ratones , Masculino , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Ácido Kaínico/farmacología , Ratones Noqueados , Ácido Glutámico/metabolismo , Inhibidores de Caspasas/farmacología , Inhibidores de Caspasas/uso terapéutico , Diazepam/farmacología , Diazepam/uso terapéutico , Transmisión Sináptica/efectos de los fármacos
19.
Environ Res ; 252(Pt 3): 119009, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679277

RESUMEN

Fine particulate matter (PM2.5) harms human health and hinders normal human life. Considering the serious complexity and obvious regional characteristics of PM2.5 pollution, it is urgent to fill in the comprehensive overview of regional characteristics and interannual evolution of PM2.5. This review studied the PM2.5 pollution in six typical areas between 2014 and 2022 based on the data published by the Chinese government and nearly 120 relevant literature. We analyzed and compared the characteristics of interannual and quarterly changes of PM2.5 concentration. The Beijing-Tianjin-Hebei region (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) made remarkable progress in improving PM2.5 pollution, while Fenwei Plain (FWP), Sichuan Basin (SCB) and Northeast Plain (NEP) were slightly inferior mainly due to the relatively lower level of economic development. It was found that the annual average PM2.5 concentration change versus year curves in the three areas with better pollution control conditions can be merged into a smooth curve. Importantly, this can be fitted for the accurate evaluation of each area and provide reliable prediction of its future evolution. In addition, we analyzed the factors affecting the PM2.5 in each area and summarize the causes of air pollution in China. They included primary emission, secondary generation, regional transmission, as well as unfavorable air dispersion conditions. We also suggested that the PM2.5 pollution control should target specific industries and periods, and further research need to be carried out on the process of secondary production. The results provided useful assistance such as effect prediction and strategy guidance for PM2.5 pollution control in Chinese backward areas.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado , Material Particulado/análisis , China , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Mejoramiento de la Calidad , Tamaño de la Partícula
20.
Biochem Genet ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877158

RESUMEN

Endophytic fungi associated with plants may contain undiscovered bioactive compounds. Under standard laboratory conditions, most undiscovered compounds are inactive, whereas their production could be stimulated under different cultivation conditions. In this study, six endophytic fungi were isolated from the bark of Koelreuteria paniculata in Quancheng Park, Jinan City, Shandong Province, one of which was identified as a new subspecies of Aureobasidium pullulans, named A. pullulans KB3. Additionally, metabolomic tools were used to screen suitable media for A. pullulans KB3 fermentation, and the results showed that peptone dextrose medium (PDM) was more beneficial to culture A. pullulans KB3 for isolation of novel compounds. Sphaerolone, a polyketone compound, was initially isolated from A. pullulans KB3 via scaled up fermentation utilizing PDM. Additionally, the whole-genome DNA of A. pullulans KB3 was sequenced to facilitate compound isolation and identify the biosynthesis gene clusters (BGCs). This study reports the multi-omics (metabolome and genome) analysis of A. pullulans KB3, laying the foundation for discovering novel compounds of silent BGCs and identifying their biosynthesis pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA