Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(16): e202400952, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38372593

RESUMEN

Cu-based catalysts have been identified as the most promising candidates for generation of C2+ products in electrochemical CO2 reduction reaction. Defect engineering in catalysts is a widely employed strategy for promoting C-C coupling on Cu. However, comprehensive understanding of defect structure-to-activity relationship has not been obtained. In this study, controllable defects generation is achieved, which leads to a series of Cu-based catalysts with various phase mixing degrees. It is observed that the Faradaic efficiency toward C2+ products increases with the phase mixing degree, reaching 81 % at maximum. In situ infrared absorption spectroscopy reveals that the catalysts with higher phase mixing degree tend to form *CO more easily and possess higher retention of *CO under high overpotential window, thereby promoting C-C coupling. This work sheds new light on the relationship between defects and C-C coupling, and the rational developed of more advanced Cu-base catalysts.

3.
Nat Commun ; 13(1): 1777, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365627

RESUMEN

Electrically interfacing atomically thin transition metal dichalcogenide semiconductors (TMDSCs) with metal leads is challenging because of undesired interface barriers, which have drastically constrained the electrical performance of TMDSC devices for exploring their unconventional physical properties and realizing potential electronic applications. Here we demonstrate a strategy to achieve nearly barrier-free electrical contacts with few-layer TMDSCs by engineering interfacial bonding distortion. The carrier-injection efficiency of such electrical junction is substantially increased with robust ohmic behaviors from room to cryogenic temperatures. The performance enhancements of TMDSC field-effect transistors are well reflected by the low contact resistance (down to 90 Ωµm in MoS2, towards the quantum limit), the high field-effect mobility (up to 358,000 cm2V-1s-1 in WSe2), and the prominent transport characteristics at cryogenic temperatures. This method also offers possibilities of the local manipulation of atomic structures and electronic properties for TMDSC device design.

4.
Nanoscale Horiz ; 5(9): 1309-1316, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32696773

RESUMEN

Twisted bilayer graphene provides a new two-dimensional platform for studying electron interaction phenomena and flat band properties such as correlated insulator transition, superconductivity and ferromagnetism at certain magic angles. Here, we present experimental characterization of interaction effects and superconductivity signatures in p-type twisted double-bilayer WSe2. Enhanced interlayer interactions are observed when the twist angle decreases to a few degrees as reflected by the high-order satellites in the electron diffraction patterns taken from the reconstructed domains from a conventional moiré superlattice. In contrast to twisted bilayer graphene, there is no specific magic angle for twisted WSe2. Flat band properties are observable at twist angles ranging from 1 to 4 degrees. Our work has facilitated future study in the area of flat band related properties in twisted transition metal dichalcogenide layered structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA