Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Biomed Sci ; 20: 24, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23594158

RESUMEN

BACKGROUND: mTOR is a genetically conserved serine/threonine protein kinase, which controls cell growth, proliferation, and survival. A multifunctional protein CAD, catalyzing the initial three steps in de novo pyrimidine synthesis, is regulated by the phosphorylation reaction with different protein kinases, but the relationship with mTOR protein kinase has not been known. RESULTS: CAD was recovered as a binding protein with mLST8, a component of the mTOR complexes, from HEK293 cells transfected with the FLAG-mLST8 vector. Association of these two proteins was confirmed by the co-immuoprecipitaiton followed by immunoblot analysis of transfected myc-CAD and FLAG-mLST8 as well as that of the endogenous proteins in the cells. Analysis using mutant constructs suggested that CAD has more than one region for the binding with mLST8, and that mLST8 recognizes CAD and mTOR in distinct ways. The CAD enzymatic activity decreased in the cells depleted of amino acids and serum, in which the mTOR activity is suppressed. CONCLUSION: The results obtained indicate that mLST8 bridges between CAD and mTOR, and plays a role in the signaling mechanism where CAD is regulated in the mTOR pathway through the association with mLST8.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aspartato Carbamoiltransferasa/metabolismo , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/metabolismo , Dihidroorotasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Aminoácidos/metabolismo , Aspartato Carbamoiltransferasa/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Dihidroorotasa/genética , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Fosforilación , Unión Proteica , Pirimidinas/biosíntesis , Pirimidinas/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Homóloga LST8 de la Proteína Asociada al mTOR
2.
J Biol Chem ; 285(26): 20109-16, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20427287

RESUMEN

Mammalian target of rapamycin (mTOR) is a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family and is a major regulator of translation, cell growth, and autophagy. mTOR exists in two distinct complexes, mTORC1 and mTORC2, that differ in their subunit composition. In this study, we identified KIAA0406 as a novel mTOR-interacting protein. Because it has sequence homology with Schizosaccharomyces pombe Tti1, we named it mammalian Tti1. Tti1 constitutively interacts with mTOR in both mTORC1 and mTORC2. Knockdown of Tti1 suppresses phosphorylation of both mTORC1 substrates (S6K1 and 4E-BP1) and an mTORC2 substrate (Akt) and also induces autophagy. S. pombe Tti1 binds to Tel2, a protein whose mammalian homolog was recently reported to regulate the stability of PIKKs. We confirmed that Tti1 binds to Tel2 also in mammalian cells, and Tti1 interacts with and stabilizes all six members of the PIKK family of proteins (mTOR, ATM, ATR, DNA-PKcs, SMG-1, and TRRAP). Furthermore, using immunoprecipitation and size-exclusion chromatography analyses, we found that knockdown of either Tti1 or Tel2 causes disassembly of mTORC1 and mTORC2. These results indicate that Tti1 and Tel2 are important not only for mTOR stability but also for assembly of the mTOR complexes to maintain their activities.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Factores de Transcripción/metabolismo , Proteínas Portadoras/genética , Línea Celular , Cromatografía en Gel , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Proteínas Quinasas/metabolismo , Proteínas , Proteínas Proto-Oncogénicas c-ets/genética , Interferencia de ARN , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética , Transfección
3.
Genes Cells ; 14(2): 179-89, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19170765

RESUMEN

Glutamine : fructose-6-phosphate amidotransferase 1 (GFAT1) was identified as a protein phosphorylated in glucose-deprived cells by immunoprecipitation using the anti-phospho Akt substrates (PAS) antibody, which recognizes the phosphorylation motif site by AMP-activated protein kinase (AMPK), followed by mass fingerprinting analysis. Glucose depletion-induced phosphorylation of endogenous GFAT was potentiated by 2-deoxyglucose (2-DG), an AMPK activator, and the 2-DG-stimulated phosphorylation of FLAG-tagged GFAT1 in transfected cells was suppressed by Compound C, an AMPK inhibitor. The 2-DG induced phosphorylation of GFAT1 was attenuated by the introduction of the kinase-negative mutant of AMPK, and the phosphorylation was observed in the cells expressing the constitutively active mutant of AMPK even in the absence of 2-DG. Subsequent analysis revealed that the PAS antibody recognized GFAT1 phosphorylated at Ser243, which is conserved among different species. The assay of the GFAT enzymatic activity in the cell lysates indicated that the 2-DG-treatment inhibited the enzymatic activity, and Compound C-preincubation partially prevented the 2-DG-induced decrease of the activity. Furthermore, the mutant replacing Ser243 by alanine partially prevented the decrease of GFAT activity by 2-DG treatment. These results indicate that the phosphorylation of GFAT1 at Ser243 by AMPK has an important role in the regulation of the GFAT1 enzymatic activity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/fisiología , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Activación Enzimática , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/antagonistas & inhibidores , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/química , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Humanos , Datos de Secuencia Molecular , Fosforilación , Mutación Puntual , Homología de Secuencia de Aminoácido , Serina/genética , Serina/metabolismo , Transfección
4.
Curr Biol ; 15(8): 702-13, 2005 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-15854902

RESUMEN

BACKGROUND: The target of rapamycin (TOR), in complex with the proteins raptor and LST8 (TOR complex 1), phosphorylates the p70S6K and 4E-BP1 to promote mRNA translation. Genetic evidence establishes that TOR complex activity in vivo requires the small GTPase Rheb, and overexpression of Rheb can rescue TOR from inactivation in vivo by amino-acid withdrawal. The Tuberous Sclerosis heterodimer (TSC1/TSC2) functions as a Rheb GTPase activator and inhibits TOR signaling in vivo. RESULTS: Here, we show that Rheb binds to the TOR complex specifically, independently of its ability to bind TSC2, through separate interactions with the mTOR catalytic domain and with LST8. Rheb binding to the TOR complex in vivo and in vitro does not require Rheb guanyl nucleotide charging but is modulated by GTP and impaired by certain mutations (Ile39Lys) in the switch 1 loop. Nucleotide-deficient Rheb mutants, although capable of binding mTOR in vivo and in vitro, are inhibitory in vivo, and the mTOR polypeptides that associate with nucleotide-deficient Rheb in vivo lack kinase activity in vitro. Reciprocally, mTOR polypeptides bound to Rheb(Gln64Leu), a mutant that is nearly 90% GTP charged, exhibit substantially higher protein kinase specific activity than mTOR bound to wild-type Rheb. CONCLUSIONS: The TOR complex 1 is a direct target of Rheb-GTP, whose binding enables activation of the TOR kinase.


Asunto(s)
Proteínas de Unión al GTP Monoméricas/metabolismo , Neuropéptidos/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas Quinasas/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales , Células Cultivadas , Cartilla de ADN , Activación Enzimática/fisiología , Guanosina Trifosfato/metabolismo , Humanos , Immunoblotting , Proteínas de Unión al GTP Monoméricas/genética , Mutación/genética , Neuropéptidos/genética , Fosforilación , Plásmidos/genética , Proteínas , Proteína Homóloga de Ras Enriquecida en el Cerebro , Proteína Reguladora Asociada a mTOR , Proteínas Represoras/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR , Transfección , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
5.
Mol Cell Biol ; 24(15): 6710-8, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15254238

RESUMEN

TOR is a serine-threonine kinase that was originally identified as a target of rapamycin in Saccharomyces cerevisiae and then found to be highly conserved among eukaryotes. In Drosophila melanogaster, inactivation of TOR or its substrate, S6 kinase, results in reduced cell size and embryonic lethality, indicating a critical role for the TOR pathway in cell growth control. However, the in vivo functions of mammalian TOR (mTOR) remain unclear. In this study, we disrupted the kinase domain of mouse mTOR by homologous recombination. While heterozygous mutant mice were normal and fertile, homozygous mutant embryos died shortly after implantation due to impaired cell proliferation in both embryonic and extraembryonic compartments. Homozygous blastocysts looked normal, but their inner cell mass and trophoblast failed to proliferate in vitro. Deletion of the C-terminal six amino acids of mTOR, which are essential for kinase activity, resulted in reduced cell size and proliferation arrest in embryonic stem cells. These data show that mTOR controls both cell size and proliferation in early mouse embryos and embryonic stem cells.


Asunto(s)
Embrión de Mamíferos/citología , Proteínas Quinasas/fisiología , Células Madre/fisiología , Animales , Blastocisto/metabolismo , Southern Blotting , Ciclo Celular , División Celular , Citometría de Flujo , Eliminación de Gen , Genotipo , Heterocigoto , Ratones , Ratones Noqueados , Modelos Genéticos , Mutación , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Recombinación Genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Sirolimus/farmacología , Células Madre/metabolismo , Serina-Treonina Quinasas TOR , Factores de Tiempo , Distribución Tisular
6.
J Biochem ; 139(3): 347-54, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16567399

RESUMEN

Mass fingerprinting and MS/MS analysis demonstrated that Xyk, a 57-kDa Src family tyrosine kinase that is activated within minutes of Xenopus egg fertilization, comprises a mixture of two Src proteins, Src1 and Src2. However, the Xenopus Src protein, denoted as xSrc, is hardly detectable with mAb327, a universal Src-specific antibody, whose target sequence has not yet been determined. We show that a point amino acid substitution in the Src homology 3 domain of xSrc is critical for improvement of the low efficiency of its recognition by mAb327. Namely, a point-mutated xSrc, in which Arg-121 was replaced by His that is conserved among mAb327-reactive Src in mammals and chicken, showed increased recognition by mAb327. On the other hand, a mutant chicken Src, in which the His-122 residue is replaced by Arg, showed decreased recognition by mAb327. Genomic sequencing analysis also demonstrated that reptile Src proteins are of either the R-type (snake) or H-type (caiman, turtle, and tortoise). These studies revealed, for the first time, a critical amino acid in the Src SH3 domain for mAb327 recognition, and suggest a novel scheme for the molecular evolution of Src, in which the H-type Src(s) are monophyletic and derived from the R-type Src.


Asunto(s)
Anticuerpos Monoclonales/fisiología , Epítopos/inmunología , Filogenia , Familia-src Quinasas/genética , Familia-src Quinasas/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Chlorocebus aethiops , Datos de Secuencia Molecular , Xenopus laevis
7.
J Biochem ; 139(1): 129-35, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16428328

RESUMEN

Heat shock protein 90 (Hsp90) was co-immunoprecipitated with raptor, the binding partner of the mammalian target of rapamycin (mTOR) from HEK293 cells. Hsp90 was detected in the anti-raptor antibody immunoprecipitates prepared from the cell extract by immunoblot analysis using the anti-Hsp90 antibody, and the association of these two proteins was confirmed by immunoprecipitation from the cells co-expressing Hsp90 and raptor as epitope-tagged molecules. Geldanamycin, a potent inhibitor of Hsp90, disrupted the in vivo binding of Hsp90 to raptor without affecting the association of raptor and mTOR, and suppressed the phosphorylation by mTOR of the downstream translational regulators p70 S6 kinase (S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). The protein kinase activity of S6K as well as the phosphorylation of the substrate, 40S ribosomal protein S6, were lowered in the geldanamycin-treated cells. These results indicate that Hsp90 is involved in the regulation of protein translation by facilitating the phosphorylation reaction of 4E-BP1 and S6K catalyzed by the mTOR/raptor complex through the association with raptor, and that the mTOR signaling pathway is a novel target of geldanamycin.


Asunto(s)
Benzoquinonas/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Lactamas Macrocíclicas/farmacología , Proteínas Quinasas/metabolismo , Proteínas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Línea Celular , Humanos , Inmunoprecipitación , Datos de Secuencia Molecular , Fosforilación , Proteína Reguladora Asociada a mTOR , Serina-Treonina Quinasas TOR
8.
FEMS Microbiol Lett ; 254(1): 157-64, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16451194

RESUMEN

The mitochondrial ribosome (mitoribosome) has highly evolved from its putative prokaryotic ancestor and varies considerably from one organism to another. To gain further insights into its structural and evolutionary characteristics, we have purified and identified individual mitochondrial ribosomal proteins of Neurospora crassa by mass spectrometry and compared them with those of the budding yeast Saccharomyces cerevisiae. Most of the mitochondrial ribosomal proteins of the two fungi are well conserved with each other, although the degree of conservation varies to a large extent. One of the N. crassa mitochondrial ribosomal proteins was found to be homologous to yeast Mhr1p that is involved in homologous DNA recombination and genome maintenance in yeast mitochondria.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Neurospora crassa/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/aislamiento & purificación , Humanos , Espectrometría de Masas , Neurospora crassa/genética , Neurospora crassa/ultraestructura , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Methods Mol Biol ; 322: 395-411, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16739739

RESUMEN

Xenopus oocytes, eggs, and embryos serve as an ideal model system to study several aspects of animal development (e.g., gametogenesis, fertilization, embryogenesis, and organogenesis). In particular, the Xenopus system has been extensively employed not only as a "living cell" system but also as a "cell-free" or "reconstitutional" system. In this chapter, we describe a protocol for studying the molecular mechanism of egg fertilization with the use of cell-free extracts and membrane/lipid rafts prepared from unfertilized, metaphase II-arrested Xenopus eggs. By using this experimental system, we have reconstituted a series of signal transduction events associated with egg fertilization, such as sperm-egg membrane interaction, activation of Src tyrosine kinase and phospholipase Cgamma, production of inositol trisphosphate, transient calcium release, and cell cycle transition. This type of reconstitutional system may allow us to perform focused proteomics (e.g., rafts) as well as global protein analysis (i.e., whole egg proteome) of fertilization in a cell-free manner. As one of these proteomics approaches, we provide a protocol for molecular identification of Xenopus egg raft proteins using mass spectrometry and database mining.


Asunto(s)
Extractos Celulares , Fertilización/fisiología , Microdominios de Membrana/fisiología , Proteómica , Proteínas de Xenopus/fisiología , Animales , Células COS , Sistema Libre de Células , Chlorocebus aethiops , Femenino , Masculino , Microdominios de Membrana/química , Proteómica/métodos , Proteínas de Xenopus/química , Xenopus laevis
10.
J Neurosci ; 24(44): 9760-9, 2004 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-15525761

RESUMEN

In neurons, perisynaptic or dendritic translation is implicated in synapse-wide alterations of function and morphology triggered by neural activity. The molecular mechanisms controlling local translation activation, however, have yet to be elucidated. Here, we show that local protein synthesis and translational activation in neuronal dendrites are upregulated by brain-derived neurotrophic factor (BDNF) in a rapamycin and small interfering RNA specific for mammalian target of rapamycin (mTOR)-sensitive manner. In parallel, BDNF induced the phosphorylation of tuberin and the activation of mTOR in dendrites and the synaptoneurosome fraction. mTOR activation stimulated translation initiation processes involving both eIF4E/4E-binding protein (4EBP) and p70S6 kinase/ribosomal S6 protein. BDNF induced phosphorylation of 4EBP in isolated dendrites. Moreover, local puff application of BDNF to dendrites triggered S6 phosphorylation in a restricted area. Taken together, these data indicate that mTOR-dependent translation activation is essential for the upregulation of local protein synthesis in neuronal dendrites.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Dendritas/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Proteínas Quinasas/fisiología , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Dendritas/efectos de los fármacos , Regulación de la Expresión Génica , Proteínas de Unión al GTP Monoméricas/análisis , Proteínas del Tejido Nervioso/análisis , Plasticidad Neuronal/fisiología , Neuropéptidos/análisis , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/fisiología , Proteínas Quinasas/análisis , ARN Interferente Pequeño , Proteína Homóloga de Ras Enriquecida en el Cerebro , Ratas , Proteínas Represoras/análisis , Sirolimus/farmacología , Sinaptosomas/metabolismo , Serina-Treonina Quinasas TOR , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/análisis
11.
Biochim Biophys Acta ; 1542(1-3): 41-56, 2002 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-11853878

RESUMEN

The mTOR protein kinase is known to control cell cycle progression and cell growth through regulation of translation, transcription, membrane traffic and protein degradation. Known interactions of mTOR do not account for the multiple functions of this protein. Using a non-catalytic segment of mTOR (1-670) as bait in a yeast two-hybrid screen for interacting proteins, ubiquilin 1 (NM013438) was identified. Ubiquilin 1 is a member of a phylogenetically conserved gene family of unknown function, characterized by an N-terminal ubiquitin-like (Ubq) domain, a C-terminal ubiquitin associated (Uba) domain and a central region containing numerous NPXvar phi motifs (X, any; phi, hydrophobic amino acid). GST-ubiquilin 1 binds specifically to FLAG-mTOR (residues 1-670) in mammalian cells; residues 570-670 of mTOR and 226-323 of ubiquilin 1 are required for this interaction. Both mTOR and ubiquilin immunoreactivity appear as fine speckles throughout the cytoplasm; significant colocalization with cytoskeletal elements, early endosomes or proteasomes is not observed. As assessed by cell fractionation, mTOR is predominantly associated with low density membranes, along with 10% of ubiquilin 1. Ubiquilin 1 is a rapamycin-insensitive phosphoprotein. Overexpression of ubiquilin 1 does not alter the kinase activity of cotransfected mTOR or the phosphorylation of the mTOR target, p70 S6 kinase, in the presence or absence of rapamycin. Our data suggest that we have identified a novel mTOR interactor, ubiquilin 1. The biological significance of this, presumably membrane based, interaction, requires further study.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Ciclo Celular , Chaperonas Moleculares/química , Proteínas Quinasas/química , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Proteínas Relacionadas con la Autofagia , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Fraccionamiento Celular , Línea Celular , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Inmunohistoquímica , Chaperonas Moleculares/genética , Chaperonas Moleculares/inmunología , Datos de Secuencia Molecular , Proteínas Quinasas/genética , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Alineación de Secuencia , Serina-Treonina Quinasas TOR , Técnicas del Sistema de Dos Híbridos
12.
J Biochem ; 137(4): 509-15, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15858175

RESUMEN

A recent study showed that the AGACCTTTGC nucleotides sequence (between -90 and -81) contained in the cis-regulatory element in an intestine-specific membrane guanylyl cyclase gene, OlGC6, of the medaka fish, Oryzias latipes, are important for the transcription of the gene in mammalian cultured cell line and in medaka fish. Using sequence-specific DNA affinity chromatography, we purified a cis-regulatory element-binding protein from a medaka fish intestinal nuclear extract and used mass spectrometry to identify it as a medaka fish homologue of general transcriptional coactivator PC4, which we designated as OlPC4. The expression of the OlPC4 gene was detected in embryos, as well as in a large variety of tissues of adult medaka fish. Using a 17-kDa recombinant OlPC4, we carried out an ultraviolet (UV) cross-linking experiment and an electrophoretic mobility shift assay (EMSA), and demonstrated that the recombinant OlPC4 can be substituted for native OlPC4 in medaka fish intestinal nuclear extracts. In CACO-2 cells, cotransfection of the OlGC6-luciferase fusion genes with an OlPC4 expression vector resulted in 1.5-fold stimulation of the OlGC6 promoter.


Asunto(s)
Guanilato Ciclasa/biosíntesis , Oryzias/genética , Proteínas Represoras/fisiología , Transactivadores/fisiología , Transcripción Genética/fisiología , Secuencia de Aminoácidos , Animales , Genes Reguladores , Humanos , Proteínas Inmediatas-Precoces , Intestinos/enzimología , Proteínas de la Membrana , Ratones , Datos de Secuencia Molecular , Ratas , Alineación de Secuencia
13.
FEBS Lett ; 587(18): 2924-9, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23892082

RESUMEN

Target of rapamycin complex 1 (TORC1) has a key role in cellular regulations in response to environmental conditions. In yeast, Tip41 downregulates TORC1 signaling via activation of PP2A phosphatase. We show here that overexpression of TIPRL, a mammalian Tip41, suppressed dephosphorylation of mechanistic TORC1 (mTORC1) substrates under amino acid withdrawal, and knockdown of TIPRL conversely attenuated phosphorylation of those substrates after amino acid refeeding. TIPRL associated with the catalytic subunit of PP2A (PP2Ac), which was required for the TIPRL action on mTORC1 signaling. Collectively, unlike yeast TIP41, TIPRL has a positive effect on mTORC1 signaling through the association with PP2Ac.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos/metabolismo , Proteína Fosfatasa 2/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/genética , Mutación Puntual , Proteína Fosfatasa 2/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Serina-Treonina Quinasas TOR/genética , Transfección
15.
Neurosci Res ; 68(2): 88-93, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20599569

RESUMEN

Novel protein synthesis is an essential element of various learning paradigms. Although pharmacological and genetic strategies have indicated the importance of translational activation in learning, the specific signaling pathways that are activated in the brain remain unclear. Here, we show that mammalian target of rapamycin (mTOR), a key serine/threonine protein kinase in translational control, is activated in hippocampus of the learning rat as revealed by in vitro kinase assay, Western blotting and immunohistochemistry. The substrates of mTOR, eukaryotic initiation factor 4E-binding protein (4EBP) and p70S6 kinase (p70S6K) are phosphorylated, and total protein synthesis is enhanced, in the learning hippocampus. Furthermore, the inhibition of mTOR by chronic infusion of rapamycin, a specific inhibitor of mTOR, into the ventricle retards the establishment of spatial learning. Thus, mTOR signaling is activated during learning, enhances translation, and plays a crucial role in the spatial learning.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hipocampo/metabolismo , Aprendizaje/fisiología , Transducción de Señal/fisiología , Percepción Espacial/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Análisis de Varianza , Animales , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Inmunosupresores/farmacología , Péptidos y Proteínas de Señalización Intracelular , Aprendizaje/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Fosfoproteínas/metabolismo , Ratas , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Percepción Espacial/efectos de los fármacos
16.
Mol Cell Biol ; 30(4): 1049-58, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19995911

RESUMEN

Autophagy is a bulk proteolytic process that is indispensable for cell survival during starvation. Autophagy is induced by nutrient deprivation via inactivation of the rapamycin-sensitive Tor complex1 (TORC1), a protein kinase complex regulating cell growth in response to nutrient conditions. However, the mechanism by which TORC1 controls autophagy and the direct target of TORC1 activity remain unclear. Atg13 is an essential regulatory component of autophagy upstream of the Atg1 kinase complex, and here we show that yeast TORC1 directly phosphorylates Atg13 at multiple Ser residues. Additionally, expression of an unphosphorylatable Atg13 mutant bypasses the TORC1 pathway to induce autophagy through activation of Atg1 in cells growing under nutrient-rich conditions. Our findings suggest that the direct control of the Atg1 complex by TORC1 induces autophagy.


Asunto(s)
Autofagia , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Proteínas Relacionadas con la Autofagia , Microscopía Electrónica , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
18.
Kobe J Med Sci ; 53(6): 283-96, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18762723

RESUMEN

Hypoxia-inducible transcription factor 1 (HIF-1), consisting of HIF-1 alpha and HIF-1 beta subunits, regulates the expression of a variety of genes involved in diverse adaptive processes in response to hypoxia. While oxygen availability regulates HIF-1 alpha by proteolytic degradation, some growth factors regulate HIF-1 alpha by protein synthesis in part through mammalian target of rapamycin complex 1 (TORC1) pathway. We herein report the role of nutrient availability on the regulation of HIF-1. A reduced availability of glucose, not amino acids, results in a decrease of the expression of HIF1-dependent genes and HIF-1 alpha protein in response to hypoxia. HIF-1 alpha mRNA expression was not significantly suppressed and DMOG, an inhibitor for proteasomal degradation of HIF-1 alpha, did not induce HIF-1 alpha protein expression under hypoxia combined with glucose depletion. In comparison to the effect in the presence of glucose, glucose depletion under hypoxia induced a much stronger activation of the AMP-dependent kinase pathway and phosphorylation of eIF2 alpha, and nearly complete inhibition of the TORC1 pathway. These findings imply that the reduced availability of glucose under hypoxia downregulates HIF-1 in part through the inhibition of HIF-1 alpha mRNA translation, which is occasionally observed in pathophysiological situations such as ischemic diseases.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Glucosa/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Antibacterianos/farmacología , Hipoxia de la Célula , Línea Celular , Citosol/efectos de los fármacos , Citosol/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Fosforilación , Biosíntesis de Proteínas , Proteínas Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR
19.
J Biol Chem ; 283(7): 4430-8, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18063581

RESUMEN

Sufficiency and depletion of nutrients regulate the cellular activities through the protein phosphorylation reaction; however, many protein substrates remain to be clarified. GBF1 (Golgi-specific brefeldin A resistance factor 1), a guanine nucleotide exchange factor for the ADP-ribosylation factor family associated with the Golgi apparatus, was isolated as a phosphoprotein from the glucose-depleted cells by using the phospho-Akt-substrate antibody, which recognizes the substrate proteins of several protein kinases. The phosphorylation of GBF1 was induced by 2-deoxyglucose (2-DG), which blocks glucose utilization and increases the intracellular AMP concentration, and by AICAR, an AMP-activated protein kinase (AMPK) activator. This phosphorylation was observed in the cells expressing the constitutively active AMPK. The 2-DG-induced phosphorylation of GBF1 was suppressed by Compound C, an AMPK inhibitor, and by the overexpression of the kinase-negative AMPK. Analysis using the deletion and point mutants identified Thr(1337) as the 2-DG-induced phosphorylation site in GBF1, which is phosphorylated by AMPK in vitro. ATP depletion is known to provoke the Golgi apparatus disassembly. Immunofluorescent microscopic analysis with the Golgi markers indicated that GBF1 associates with the fragmented Golgi apparatus in the cells treated with 2-DG and AICAR. The expression of the kinase-negative AMPK and the GBF1 mutant replacing Thr(1337) by Ala prevented the 2-DG-induced Golgi disassembly. These results indicate that GBF1 is a novel AMPK substrate and that the AMPK-mediated phosphorylation of GBF1 at Thr(1337) has a critical role, presumably by attenuating the function of GBF1, in the disassembly of the Golgi apparatus induced under stress conditions that lower the intracellular ATP concentration.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Treonina/metabolismo , Animales , Línea Celular , Técnica del Anticuerpo Fluorescente , Factores de Intercambio de Guanina Nucleótido/química , Humanos , Fosforilación
20.
PLoS One ; 3(5): e2223, 2008 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-18493323

RESUMEN

The target of rapamycin (Tor) protein plays central roles in cell growth. Rapamycin inhibits cell growth and promotes cell cycle arrest at G1 (G0). However, little is known about whether Tor is involved in other stages of the cell division cycle. Here we report that the rapamycin-sensitive Tor complex 1 (TORC1) is involved in G2/M transition in S. cerevisiae. Strains carrying a temperature-sensitive allele of KOG1 (kog1-105) encoding an essential component of TORC1, as well as yeast cell treated with rapamycin show mitotic delay with prolonged G2. Overexpression of Cdc5, the yeast polo-like kinase, rescues the growth defect of kog1-105, and in turn, Cdc5 activity is attenuated in kog1-105 cells. The TORC1-Type2A phosphatase pathway mediates nucleocytoplasmic transport of Cdc5, which is prerequisite for its proper localization and function. The C-terminal polo-box domain of Cdc5 has an inhibitory role in nuclear translocation. Taken together, our results indicate a novel function of Tor in the regulation of cell cycle and proliferation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , División Celular , Fase G2 , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Transducción de Señal , Alelos , Proteínas de la Membrana/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA