RESUMEN
Additional sex combs-like 1 (ASXL1), an epigenetic modulator, is frequently mutated in myeloid neoplasms. Recent analyses of mutant ASXL1 conditional knockin (ASXL1-MT-KI) mice suggested that ASXL1-MT alone is insufficient for myeloid transformation. In our previous study, we used retrovirus-mediated insertional mutagenesis, which exhibited the susceptibility of ASXL1-MT-KI hematopoietic cells to transform into myeloid leukemia cells. In this screening, we identified the hematopoietically expressed homeobox (HHEX) gene as one of the common retrovirus integration sites. In this study, we investigated the potential cooperation between ASXL1-MT and HHEX in myeloid leukemogenesis. Expression of HHEX enhanced proliferation of ASXL1-MT-expressing HSPCs by inhibiting apoptosis and blocking differentiation, whereas it showed only modest effect in normal HSPCs. Moreover, ASXL1-MT and HHEX accelerated the development of RUNX1-ETO9a and FLT3-ITD leukemia. Conversely, HHEX depletion profoundly attenuated the colony-forming activity and leukemogenicity of ASXL1-MT-expressing leukemia cells. Mechanistically, we identified MYB and ETV5 as downstream targets for ASXL1-MT and HHEX by using transcriptome and chromatin immunoprecipitation-next-generation sequencing analyses. Moreover, we found that expression of ASXL1-MT enhanced the binding of HHEX to the promoter loci of MYB or ETV5 via reducing H2AK119ub. Depletion of MYB or ETV5 induced apoptosis or differentiation in ASXL1-MT-expressing leukemia cells, respectively. In addition, ectopic expression of MYB or ETV5 reversed the reduced colony-forming activity of HHEX-depleted ASXL1-MT-expressing leukemia cells. These findings indicate that the HHEX-MYB/ETV5 axis promotes myeloid transformation in ASXL1-mutated preleukemia cells.
Asunto(s)
Transformación Celular Neoplásica/genética , Predisposición Genética a la Enfermedad , Proteínas de Homeodominio/genética , Mutación , Células Mieloides/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/genética , Animales , Apoptosis/genética , Biomarcadores de Tumor , Biopsia , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Ciclo Celular/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Ensayo de Unidades Formadoras de Colonias , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Inmunofenotipificación , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/mortalidad , Leucemia Mieloide/patología , Ratones , Células Mieloides/patología , Pronóstico , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismoRESUMEN
RUNX1 is a member of RUNX transcription factors and plays important roles in hematopoiesis. Disruption of RUNX1 activity has been implicated in the development of hematopoietic neoplasms. Chromosomal translocations involving the RUNX1 gene are associated with several types of leukemia, including acute myeloid leukemia driven by a leukemogenic fusion protein RUNX1-RUNX1T1. Previous studies have shown that RUNX1 is an unstable protein and is subjected to proteolytic degradation mediated by the ubiquitin-proteasome pathway. However, the precise mechanisms of RUNX1 ubiquitination have not been fully understood. Furthermore, much less is known about the mechanisms to regulate the stability of RUNX1-RUNX1T1. In this study, we identified several RUNX1-interacting E3 ubiquitin ligases using a novel high-throughput binding assay. Among them, we found that STUB1 bound to RUNX1 and induced its ubiquitination and degradation mainly in the nucleus. Immunofluorescence analyses revealed that the STUB1-induced ubiquitination also promoted nuclear export of RUNX1, which probably contributes to the reduced transcriptional activity of RUNX1 in STUB1-overexpressing cells. STUB1 also induced ubiquitination of RUNX1-RUNX1T1 and down-regulated its expression. Importantly, STUB1 overexpression showed a substantial growth-inhibitory effect in myeloid leukemia cells that harbor RUNX1-RUNX1T1, whereas it showed only a marginal effect in other non-RUNX1-RUNX1T1 leukemia cells and normal human cord blood cells. Taken together, these data suggest that the E3 ubiquitin ligase STUB1 is a negative regulator of both RUNX1 and RUNX1-RUNX1T1. Activation of STUB1 could be a promising therapeutic strategy for RUNX1-RUNX1T1 leukemia.
Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Estabilidad Proteica , Proteína 1 Compañera de Translocación de RUNX1RESUMEN
RUNX1 is a member of RUNX transcription factors and plays important roles in hematopoiesis. RUNX1 function is under the tight control through posttranslational modifications, including phosphorylation and ubiquitination. We previously developed a luminescence-based binding assay (AlphaScreen) to systematically detect RUNX1-interacting E3 ubiquitin ligases. In this study, we showed that a nuclear ubiquitin ligase RNF38 induced ubiquitination of RUNX1. RNF38-induced RUNX1 ubiquitination did not promote RUNX1 degradation, but rather stabilized RUNX1 protein. We also found that RNF38 enhanced RUNX1-mediated transcriptional repression of the erythroid master regulator KLF1 in K562â¯cells. Consequently, RNF38 cooperated with RUNX1 to inhibit erythroid differentiation of K562â¯cells. Thus, our study identified RNF38 as a novel E3 ligase that modifies RUNX1 function without inducing its degradation.
Asunto(s)
Proteínas Portadoras/farmacología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Ubiquitinación/efectos de los fármacos , Diferenciación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/efectos de los fármacos , Células Eritroides/citología , Células Eritroides/efectos de los fármacos , Humanos , Células K562 , Factores de Transcripción de Tipo Kruppel , Estabilidad Proteica/efectos de los fármacos , Ubiquitina-Proteína Ligasas/farmacologíaRESUMEN
Transcription factor RUNX1 plays important roles in hematopoiesis and leukemogenesis. RUNX1 function is tightly controlled through posttranslational modifications, including ubiquitination and acetylation. However, its regulation via ubiquitination, especially proteasome-independent ubiquitination, is poorly understood. We previously identified DTX2 as a RUNX1-interacting E3 ligase using a cell-free AlphaScreen assay. In this study, we examined whether DTX2 is involved in the regulation of RUNX1 using in vitro and ex vivo analyses. DTX2 bound to RUNX1 and other RUNX family members RUNX2 and RUNX3 through their C-terminal region. DTX2-induced RUNX1 ubiquitination did not result in RUNX1 protein degradation. Instead, we found that the acetylation of RUNX1, which is known to enhance the transcriptional activity of RUNX1, was inhibited in the presence of DTX2. Concomitantly, DTX2 reduced the RUNX1-induced activation of an MCSFR luciferase reporter. We also found that DTX2 induced RUNX1 cytoplasmic mislocalization. Moreover, DTX2 overexpression showed a substantial growth-inhibitory effect in RUNX1-dependent leukemia cell lines. Thus, our findings indicate a novel aspect of the ubiquitination and acetylation of RUNX1 that is modulated by DTX2 in a proteosome-independent manner.
Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Leucemia , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación de la Expresión Génica , Leucemia/genéticaRESUMEN
Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in de novo guanine nucleotide synthesis pathway. Although IMPDH inhibitors are widely used as effective immunosuppressants, their antitumor effects have not been proven in the clinical setting. Here, we found that acute myeloid leukemias (AMLs) with MLL-fusions are susceptible to IMPDH inhibitors in vitro. We also showed that alternate-day administration of IMPDH inhibitors suppressed the development of MLL-AF9-driven AML in vivo without having a devastating effect on immune function. Mechanistically, IMPDH inhibition induced overactivation of Toll-like receptor (TLR)-TRAF6-NF-κB signaling and upregulation of an adhesion molecule VCAM1, which contribute to the antileukemia effect of IMPDH inhibitors. Consequently, combined treatment with IMPDH inhibitors and the TLR1/2 agonist effectively inhibited the development of MLL-fusion AML. These findings provide a rational basis for clinical testing of IMPDH inhibitors against MLL-fusion AMLs and potentially other aggressive tumors with active TLR signaling.
Asunto(s)
Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Humanos , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Inhibidores Enzimáticos/farmacología , FN-kappa B , Inmunosupresores/uso terapéuticoRESUMEN
Paraspeckles are membraneless organelles formed through liquid-liquid phase separation and consist of multiple proteins and RNAs, including NONO, SFPQ, and NEAT1. The role of paraspeckles and the component NONO in hematopoiesis remains unknown. In this study, we show histone modifier ASXL1 is involved in paraspeckle formation. ASXL1 forms phase-separated droplets, upregulates NEAT1 expression, and increases NONO-NEAT1 interactions through the C-terminal intrinsically disordered region (IDR). In contrast, a pathogenic ASXL mutant (ASXL1-MT) lacking IDR does not support the interaction of paraspeckle components. Furthermore, paraspeckles are disrupted and Nono localization is abnormal in the cytoplasm of hematopoietic stem and progenitor cells (HSPCs) derived from ASXL1-MT knockin mice. Nono depletion and the forced expression of cytoplasmic NONO impair the repopulating potential of HSPCs, as does ASXL1-MT. Our study indicates a link between ASXL1 and paraspeckle components in the maintenance of normal hematopoiesis.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Hematopoyéticas/metabolismo , Paraspeckles/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Animales , Proteínas de Unión al ADN/genética , Femenino , Células HL-60 , Células HeLa , Hematopoyesis , Humanos , Ratones , Ratones Transgénicos , Paraspeckles/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Células THP-1RESUMEN
Decitabine is a DNA methyltransferase inhibitor and is considered a promising drug to treat myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) with p53 mutations. However, whether loss of p53 in fact increases the response of MDS/AML cells to decitabine remains unclear. In this study, we assessed the role of p53 in MDS and AML cells treated with decitabine using mouse models for MLL-AF9-driven AML and mutant ASXL1-driven MDS/AML. CRISPR/Cas9-mediated depletion of p53 in MDS/AML cells did not increase, but rather decreased their sensitivity to decitabine. Forced expression of a dominant-negative p53 fragment (p53DD) in these cells also decreased their responses to decitabine, confirming that acute inhibition of p53 conferred resistance to decitabine in AML and MDS/AML cells. In contrast, MLL-AF9-expressing AML cells generated from bone marrow progenitors of Trp53-deficient mice were more sensitive to decitabine in vivo than their wild-type counterparts, suggesting that long-term chronic p53 deficiency increases decitabine sensitivity in AML cells. Taken together, these data revealed a multifaceted role for p53 to regulate responses of myeloid neoplasms to decitabine treatment.
Asunto(s)
Leucemia Mieloide Aguda/tratamiento farmacológico , Metiltransferasas/antagonistas & inhibidores , Síndromes Mielodisplásicos/tratamiento farmacológico , Proteína p53 Supresora de Tumor/genética , Animales , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Decitabina/farmacología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Metiltransferasas/genética , Ratones , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Proteínas Represoras/genéticaRESUMEN
Quiescent hematopoietic stem cells (HSCs) are typically dormant, and only a few quiescent HSCs are active. The relationship between "dormant" and "active" HSCs remains unresolved. Here we generate a G0 marker (G0M) mouse line that visualizes quiescent cells and identify a small population of active HSCs (G0Mlow), which are distinct from dormant HSCs (G0Mhigh), within the conventional quiescent HSC fraction. Single-cell RNA-seq analyses show that the gene expression profiles of these populations are nearly identical but differ in their Cdk4/6 activity. Furthermore, high-throughput small-molecule screening reveals that high concentrations of cytoplasmic calcium ([Ca2+]c) are linked to dormancy of HSCs. These findings indicate that G0M separates dormant and active adult HSCs, which are regulated by Cdk4/6 and [Ca2+]c. This G0M mouse line represents a useful resource for investigating physiologically important stem cell subpopulations.
Asunto(s)
Biomarcadores/metabolismo , Calcio/metabolismo , Autorrenovación de las Células , Citoplasma/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Fase de Descanso del Ciclo Celular , Animales , Proliferación Celular , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de la Célula IndividualRESUMEN
ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior HOXA genes and IRF8 through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior HOXA gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior HOXA gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms.