Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Small ; : e2400962, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511578

RESUMEN

Bioelectrochemical reactions using whole-cell biocatalysts are promising carbon-neutral approaches because of their easy operation, low cost, and sustainability. Bidirectional (outward or inward) electron transfer via exoelectrogens plays the main role in driving bioelectrochemical reactions. However, the low electron transfer efficiency seriously inhibits bioelectrochemical reaction kinetics. Here, a three dimensional and artificial nanoparticles-constituent inverse opal-indium tin oxide (IO-ITO) electrode is fabricated and employed to connect with exoelectrogens (Shewanella loihica PV-4). The above electrode collected 128-fold higher cell density and exhibited a maximum current output approaching 1.5 mA cm-2 within 24 h at anode mode. By changing the IO-ITO electrode to cathode mode, the exoelectrogens exhibited the attractive ability of extracellular electron uptake to reduce fumarate and 16 times higher reverse current than the commercial carbon electrode. Notably, Fe-containing oxide nanoparticles are biologically synthesized at both sides of the outer cell membrane and probably contributed to direct electron transfer with the transmembrane c-type cytochromes. Owing to the efficient electron exchange via artificial and biosynthetic nanoparticles, bioelectrochemical CO2 reduction is also realized at the cathode. This work not only explored the possibility of augmenting bidirectional electron transfer but also provided a new strategy to boost bioelectrochemical reactions by introducing biohybrid nanoparticles.

2.
Appl Microbiol Biotechnol ; 108(1): 33, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38175234

RESUMEN

Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: • Promising potential of isobutanol to replace gasoline • Engineering of native and non-native microbial host for isobutanol production • Challenges and opportunities for enhanced isobutanol production.


Asunto(s)
Biocombustibles , Gasolina , Butanoles , Clonación Molecular
3.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38676092

RESUMEN

In recent years, the rapid development of pig farming has led to a large quantity of heavy metal-polluted wastewater. Thus, it was desirable to develop a simple heavy metal detection method for fast monitoring of the wastewater from the pig farms. Therefore, there was an urgent need to develop a simple method for rapidly detecting heavy metal ions in pig farm wastewater. Herein, a simple electrochemical method for simultaneous detection of Cu2+ and Zn2+ was developed and applied to pig farm wastewater. With a glassy carbon electrode and anodic stripping voltammetry, simultaneous detection of Cu2+ and Zn2+ in water was achieved without the need for complicated electrode modification. Furthermore, it was found that the addition of Cd2+ can enhance the response current of the electrode to Zn2+, which increased the signal by eight times. After systematic optimization, the limit of detection (LOD) of 9.3 µg/L for Cu2+ and 45.3 µg/L for Zn2+ was obtained. Finally, it was successfully applied for the quantification of Cu2+ and Zn2+ with high accuracy in pig farm wastewater. This work provided a new and simple solution for fast monitoring of the wastewater from pig farms and demonstrated the potential of electrochemical measurement for application in modern animal husbandry.


Asunto(s)
Cobre , Técnicas Electroquímicas , Granjas , Aguas Residuales , Zinc , Aguas Residuales/química , Aguas Residuales/análisis , Cobre/análisis , Cobre/química , Zinc/análisis , Zinc/química , Animales , Porcinos , Técnicas Electroquímicas/métodos , Contaminantes Químicos del Agua/análisis , Electrodos , Límite de Detección
4.
World J Microbiol Biotechnol ; 40(4): 130, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460032

RESUMEN

ß-mannanases are pivotal enzymes that cleave the mannan backbone to release short chain mannooligosaccharides, which have tremendous biotechnological applications including food/feed, prebiotics and biofuel production. Due to the high temperature conditions in many industrial applications, thermophilic mannanases seem to have great potential to overcome the thermal impediments. Thus, structural analysis of thermostable ß-mannanases is extremely important, as it could open up new avenues for genetic engineering, and protein engineering of these enzymes with enhanced properties and catalytic efficiencies. Under this scope, the present review provides a state-of-the-art discussion on the thermophilic ß-mannanases from bacterial origin, their production, engineering and structural characterization. It covers broad insights into various molecular biology techniques such as gene mutagenesis, heterologous gene expression, and protein engineering, that are employed to improve the catalytic efficiency and thermostability of bacterial mannanases for potential industrial applications. Further, the bottlenecks associated with mannanase production and process optimization are also discussed. Finally, future research related to bioengineering of mannanases with novel protein expression systems for commercial applications are also elaborated.


Asunto(s)
Bacterias , beta-Manosidasa , beta-Manosidasa/química , Bacterias/metabolismo , Ingeniería Genética , Biotecnología/métodos , Mananos/química , Bioingeniería
5.
Angew Chem Int Ed Engl ; 63(29): e202402318, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710653

RESUMEN

Direct interspecies electron transfer (DIET) is essential for maintaining the function and stability of anaerobic microbial consortia. However, only limited natural DIET modes have been identified and DIET engineering remains highly challenging. In this study, an unnatural DIET between Shewanella oneidensis MR-1 (SO, electron donating partner) and Rhodopseudomonas palustris (RP, electron accepting partner) was artificially established by a facile living cell-cell click chemistry strategy. By introducing alkyne- or azide-modified monosaccharides onto the cell outer surface of the target species, precise covalent connections between different species in high proximity were realized through a fast click chemistry reaction. Remarkably, upon covalent connection, outer cell surface C-type cytochromes mediated DIET between SO and RP was achieved and identified, although this was never realized naturally. Moreover, this connection directly shifted the natural H2 mediated interspecies electron transfer (MIET) to DIET between SO and RP, which delivered superior interspecies electron exchange efficiency. Therefore, this work demonstrated a naturally unachievable DIET and an unprecedented MIET shift to DIET accomplished by cell-cell distance engineering, offering an efficient and versatile solution for DIET engineering, which extends our understanding of DIET and opens up new avenues for DIET exploration and applications.


Asunto(s)
Química Clic , Rhodopseudomonas , Shewanella , Transporte de Electrón , Shewanella/metabolismo , Shewanella/química , Rhodopseudomonas/metabolismo , Rhodopseudomonas/química , Azidas/química , Azidas/metabolismo , Alquinos/química
6.
Anal Chem ; 95(5): 2628-2632, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36705511

RESUMEN

A novel microfiber-like biohydrogel was fabricated by a facile approach relying on electroactive bacteria-induced graphene oxide reduction and confined self-assembly in a capillary tube. The microfiber-like biohydrogel (d = ∼1 mm) embedded high-density living cells and activated efficient electron exchange between cells and the conductive graphene network. Further, a miniature whole-cell electrochemical biosensing system was developed and applied for fumarate detection under -0.6 V (vs Ag/AgCl) applied potential. Taking advantage of its small size, high local cell density, and excellent electron exchange, this microfiber-like biohydrogel-based sensing system reached a linear calibration curve (R2 = 0.999) ranging from 1 nM to 10 mM. The limit of detection obtained was 0.60 nM, which was over 1300 times lower than a traditional biosensor for fumarate detection in 0.2 µL microdroplets. This work opened a new dimension for miniature whole-cell electrochemical sensing system design, which provided the possibility for bioelectrochemical detection in small volumes or three-dimensional local detection at high spatial resolutions.


Asunto(s)
Técnicas Biosensibles , Grafito , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Bacterias , Fumaratos , Conductividad Eléctrica , Límite de Detección
7.
J Environ Manage ; 336: 117695, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36907062

RESUMEN

Butyrate production from renewable biomass shows great potential against climate change and over-consumption of fossil fuels. Herein, key operational parameters of a cathodic electro-fermentation (CEF) process were optimized for efficient butyrate production from rice straw by mixed culture. The cathode potential, controlled pH and initial substrate dosage were optimized at -1.0 V (vs Ag/AgCl), 7.0 and 30 g/L, respectively. Under the optimal conditions, 12.50 g/L butyrate with yield of 0.51 g/g-rice straw were obtained in batch-operated CEF system. In fed-batch mode, butyrate production significantly increased to 19.66 g/L with the yield of 0.33 g/g-rice straw, but 45.99% butyrate selectivity still needs to be improved in future. Enriched butyrate producing bacteria (Clostridium cluster XIVa and IV) with proportion of 58.75% on the 21st day of the fed-batch fermentation, contributed to the high-level butyrate production. The study provides a promising approach for efficient butyrate production from lignocellulosic biomass.


Asunto(s)
Butiratos , Oryza , Fermentación , Biomasa
8.
Anal Chem ; 94(22): 7738-7742, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35616684

RESUMEN

A signal amplification system for electrochemical sensing was established by bio-nanohybrid cells (BNC) based on bacterial self-assembly and biomineralization. The BNC was constructed by partially encapsulating a Shewanella oneidensis MR-1 cell with the self-biomineralized iron sulfide nanoparticles. The iron sulfide nanoparticle encapsulated BNCs showed high transmembrane electron transfer efficiency and was explored as a superior redox cycling module. Impressively, by integrating this BNC redox cycling module into the electrochemical sensing system, the output signal was amplified over 260 times compared to that without the BNC module. Uniquely, with this BNC redox cycling system, ultrasensitive detection of riboflavin with an extremely low LOD of 0.2 nM was achieved. This work demonstrated the power of BNC in the area of biosensing and provided a new possibility for the design of a whole cell redox cycling based signal amplification system.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Oxidación-Reducción , Riboflavina
9.
Environ Res ; 191: 110196, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32919957

RESUMEN

Biologically synthesized palladium nanoparticles (bio-Pd) have attracted considerable interest as promising green catalysts for environmental remediation. However, the mechanisms by which microorganisms produce bio-Pd remain unclear. In the present study, we investigated the roles of Shewanella oneidensis MR-1 and its NADH dehydrogenases and hydrogenases (HydA and HyaB) in bio-Pd production using formate as the electron donor. The roles of NADH dehydrogenases and hydrogenases were studied by inhibiting NADH dehydrogenases and using hydrogenase mutants (ΔhydA, ΔhyaB, and ΔhydAΔhyaB), respectively. The results showed ~97% reduction of palladium by S. oneidensis MR-1 after 24 h using 250 µM palladium and 500 µM formate. Electron microscopy images showed the presence of bio-Pd on both the outer and cytoplasmic membranes of S. oneidensis MR-1. However, the inhibition of NADH dehydrogenases in S. oneidensis MR-1 resulted in only ~61% reduction of palladium after 24 h, and bio-Pd were not found on the outer membrane. The mutants lacking one or two hydrogenases removed 91-96% of palladium ions after 24 h and showed more cytoplasmic bio-Pd but less periplasmic bio-Pd. To the best of our knowledge, this is the first study to demonstrate the role of NADH dehydrogenases of S. oneidensis MR-1 in the formation of bio-Pd on the outer membrane. It also demonstrates that the hydrogenases (especially HyaB) of S. oneidensis MR-1 contribute to the formation of bio-Pd in the periplasmic space. This study provides mechanistic insights into the production of biogenic metal nanoparticles towards their possible use in industrial and environmental applications.


Asunto(s)
Hidrogenasas , Nanopartículas del Metal , Hidrogenasas/genética , Hidrogenasas/metabolismo , Nanopartículas del Metal/toxicidad , NAD , Oxidación-Reducción , Paladio , Shewanella
10.
Water Sci Technol ; 82(11): 2344-2352, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33339789

RESUMEN

Silver (Ag) and palladium (Pd) nanoparticles were synthesized via a green synthesis route, which was mediated with the extract of Daucus carota leaves. The morphological, crystalline and structural nature of the synthesized nanoparticles was characterized by UV-Vis spectrophotometer, and TEM, XRD and FT-IR analyses. High antibacterial activities of the prepared Ag and Pd nanoparticles were observed towards different water-borne pathogens of Klebsiella pneumonia, Vibrio cholera and Escherichia coli. The catalytic efficiency of the prepared nanoparticles for the removal of rhodamine 6G (Rh-6G) dye was also evaluated. Nearly 98% of the Rh-6G dye was decolorized by the synthesized Pd nanoparticles within 2 min, and the synthesized Ag nanoparticles took 30 min for 89.4% decolorization. This work provided greener nanocatalysts for pollutant treatment and demonstrated the power of green biosynthesis for metallic nanoparticles.


Asunto(s)
Contaminantes Ambientales , Nanopartículas del Metal , Contaminantes del Agua , Antibacterianos , Tecnología Química Verde , Paladio , Extractos Vegetales , Plata , Espectroscopía Infrarroja por Transformada de Fourier
11.
Anal Chem ; 91(8): 4939-4942, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30859817

RESUMEN

An in vivo two-way redox cycling system based on whole-cell bidirectional electron transfer was developed and applied for independent duplexed electrochemical signal amplification. This duplexed signal amplification system was established by activating the bacterial "inwards" electron transfer at low electrode potential for oxidative cycling, while accomplishing the bacterial "outwards" electron transfer at high electrode potential for reductive cycling. Therefore, with this two-way bioredox cycling system, simultaneous and independent amplification of the electrochemical signals for oxidation and reduction was achieved. More impressively, by using this duplexed signal amplification system, ultrasensitive and simultaneous detection of two different warfare toxins of Pseudomonas aeruginosa was achieved (sensitivity was improved 302 and 579 times, respectively), which makes it possible for double-checking early diagnosis of the P. aeruginosa infections.


Asunto(s)
Electroquímica/métodos , Oxidación-Reducción , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo
12.
Ecotoxicol Environ Saf ; 170: 355-362, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30544096

RESUMEN

The toxicity and persistence of the halogenated aromatics, particularly brominated phenolic compounds have drawn serious concerns to the environment, emphasizing the potential effects on human health and ecosystems balance. Advanced oxidation process (AOP) has received much attention as an alternative for the conventional wastewater treatment methods to treat water contaminated with toxic pollutants. This study investigated the degradation and detoxification of p-bromophenol (p-BP) by a novel Zr/Ag-TiO2@rGO photocatalyst under visible light. Upon 3 h of visible light irradiation over Zr/Ag-TiO2@rGO, more than 95% of p-BP (15 mg/L) degradation was achieved at a rate of 0.23 min-1. The degradation products were identified by GC-MS and possible degradation pathway was proposed. The phytotoxicity evolution of the degraded products was assessed on Vigna radiata (V. radiata), in which seeds treated with pure p-BP showed less germination (40%) compared to degradation products (100%). Furthermore, the germination index (GI) of p-BP was found to be 11.1% before degradation while it increased to 80.5% after 3 h of degradation indicated that this photodegradation process achieved detoxification of p-BP. Thus, this study demonstrated that p-BP elimination and detoxification could be simply achieved with Zr/Ag-TiO2@rGO nanocomposite under visible light irradiation, which provides new solution for wastewater treatment and water reuse in crop irrigation.


Asunto(s)
Fenoles/toxicidad , Titanio/química , Contaminantes Químicos del Agua/toxicidad , Germinación/efectos de los fármacos , Luz , Nanocompuestos/química , Oxidación-Reducción , Fotólisis , Semillas/efectos de los fármacos , Semillas/metabolismo , Vigna/efectos de los fármacos , Vigna/metabolismo , Aguas Residuales/química , Difracción de Rayos X
13.
Water Sci Technol ; 79(6): 1071-1080, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31070587

RESUMEN

A bioelectrochemical sensing system (BES) based on electroactive bacteria (EAB) has been used as a new and promising tool for water toxicity assessment. However, most EAB can reduce heavy metals, which usually results in low toxicity response. Herein, a starvation pre-incubation strategy was developed which successfully avoided the metal reduction during the toxicity sensing period. By integrating this starvation pre-incubation procedure with the amperometric BES, a sensitive, robust and mediator-free biosensing method for heavy metal toxicity assessment was developed. Under the optimized conditions, the IC50 (half maximal inhibitory concentration) values for Cu2+, Ni2+, Cd2+, and Cr6+ obtained were 0.35, 3.49, 6.52, 2.48 mg L-1, respectively. The measurement with real water samples also suggested this method was reliable for practical application. This work demonstrates that it is feasible to use EAB for heavy metal toxicity assessment and provides a new tool for water toxicity warning.


Asunto(s)
Técnicas Biosensibles , Monitoreo del Ambiente/métodos , Metales Pesados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Metales Pesados/análisis , Agua , Contaminantes Químicos del Agua/análisis
14.
Anal Bioanal Chem ; 410(4): 1231-1236, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28965160

RESUMEN

Toxicity assessment of water is of great important to the safety of human health and to social security because of more and more toxic compounds that are spilled into the aquatic environment. Therefore, the development of fast and reliable toxicity assessment methods is of great interest and attracts much attention. In this study, by using the electrochemical activity of Shewanella oneidensis MR-1 cells as the toxicity indicator, 3,5-dichlorophenol (DCP) as the model toxic compound, a new biosensor for water toxicity assessment was developed. Strikingly, the presence of DCP in the water significantly inhibited the maximum current output of the S. oneidensis MR-1 in a three-electrode system and also retarded the current evolution by the cells. Under the optimized conditions, the maximum current output of the biosensor was proportional to the concentration of DCP up to 30 mg/L. The half maximal inhibitory concentration of DCP determined by this biosensor is about 14.5 mg/L. Furthermore, simultaneous monitoring of the retarded time (Δt) for current generation allowed the identification of another biosensor signal in response to DCP which could be employed to verify the electrochemical result by dual confirmation. Thus, the present study has provided a reliable and promising approach for water quality assessment and risk warning of water toxicity.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas/instrumentación , Contaminantes Químicos del Agua/toxicidad , Clorofenoles/análisis , Shewanella/metabolismo
15.
Appl Microbiol Biotechnol ; 101(21): 7771-7779, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28924866

RESUMEN

Depilation/unhairing is the crucial but heavy pollution process in leather industry. Traditional inorganic sulfide treatment was the most widely used depilation technique in the past decades, which was usually detrimental to leather quality and resulted in serious environmental pollution. Using biocatalysts to substitute inorganic sulfide showed great advantages in environment protection and unhairing efficiency. Keratinolytic protease is one of the excellent biocatalysts to hydrolyze disulfide bond-rich proteins of hair and has little damage to leather. Biological treatment with keratinolytic proteases could largely reduce the quantity and toxicity of wastewater effluent from the leather industry. But low thermostability and substrate specificity or specific activity of these enzymes limited their practical application. Therefore, recent progresses on protein engineering strategies (site-directed mutagenesis, protein fusion, N/C-terminus truncation, and domain swapping) used to enhance the keratinolytic enzyme performance were presented.


Asunto(s)
Biotecnología/métodos , Remoción del Cabello/métodos , Queratinas/metabolismo , Péptido Hidrolasas/metabolismo , Ingeniería de Proteínas/métodos , Hidrólisis , Péptido Hidrolasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Int J Mol Sci ; 18(1)2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-28054970

RESUMEN

Bioelectrochemical systems (BES) are groups of bioelectrochemical technologies and platforms that could facilitate versatile environmental and biological applications. The performance of BES is mainly determined by the key process of electron transfer at the bacteria and electrode interface, which is known as extracellular electron transfer (EET). Thus, developing novel electrodes to encourage bacteria attachment and enhance EET efficiency is of great significance. Recently, three-dimensional (3D) electrodes, which provide large specific area for bacteria attachment and macroporous structures for substrate diffusion, have emerged as a promising electrode for high-performance BES. Herein, a comprehensive review of versatile methodology developed for 3D electrode fabrication is presented. This review article is organized based on the categorization of 3D electrode fabrication strategy and BES performance comparison. In particular, the advantages and shortcomings of these 3D electrodes are presented and their future development is discussed.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Técnicas Electroquímicas/instrumentación , Nanoestructuras/química , Adhesión Bacteriana , Electrodos , Transporte de Electrón , Diseño de Equipo , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Porosidad
17.
Anal Chem ; 88(22): 11222-11228, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27750415

RESUMEN

A whole-cell bioelectrochemical biosensing system for amperometric detection of riboflavin was developed. A "bioelectrochemical wire" (BW) consisting of riboflavin and cytochrome C between Shewanella oneidensis MR-1 and electrode was characterized. Typically, a strong electrochemical response was observed when riboflavin (VB2) was added to reinforce this BW. Impressively, the electrochemical response of riboflavin with this BW was over 200 times higher than that without bacteria. Uniquely, this electron rewiring process enabled the development of a biosensing system for amperometric detection of riboflavin. Remarkably, this amperometric method showed high sensitivity (LOD = 2.2 nM, S/N = 3), wide linear range (5 nM ∼ 10 µM, 3 orders of magnitude), good selectivity, and high resistance to interferences. Additionally, the developed amperometric method featured good stability and reusability. It was further applied for accurate and reliable determination of riboflavin in real conditions including food, pharmaceutical, and clinical samples without pretreatment. Both the cost-effectiveness and robustness make this whole-cell amperometric system ideal for practical applications. This work demonstrated the power of bioelectrochemical signal amplification with exoelectrogen and also provided a new idea for development of versatile whole-cell amperometric biosensors.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Electrones , Riboflavina/análisis , Shewanella/química , Cromatografía Líquida de Alta Presión , Electrodos , Shewanella/citología
18.
Water Sci Technol ; 73(9): 2176-81, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27148719

RESUMEN

Improvement of power production in a microbial fuel cell (MFC) with a high cell density culture strategy was developed. By using high cell density culture, the voltage output and power density output of the MFC were enhanced about 0.6 and 1.6 times compared to the control, respectively. Further analysis showed that riboflavin concentration in the MFC was dramatically increased from 0.1 mg/L to 1.2 mg/L by high cell density culture. Moreover, the biofilm formation on the anode surface was significantly enhanced by this new strategy. The increased accumulation of electron shuttle (riboflavin) as well as enhanced biofilm formation contributed to the improvement in anodic electrochemical activity and these factors were the underlying mechanism for MFC performance improvement by high cell density culture. This work demonstrated that high cell density culture would be a simple and practical strategy for MFC manipulation.


Asunto(s)
Bacterias/citología , Bacterias/metabolismo , Fuentes de Energía Bioeléctrica , Recuento de Células , Electrodos , Electrones , Riboflavina/metabolismo
19.
Water Sci Technol ; 71(6): 801-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25812087

RESUMEN

The microbial fuel cell (MFC) is an innovative technology that was initially designed to harness energy from organic waste using microorganisms. It is striking how many promising applications beyond energy production have been explored in recent decades. In particular, MFC-based biosensors are considered to be the next generation biosensing technology for environmental monitoring. This review describes recent advances in this emerging technology of MFC-based biosensors, with a special emphasis on monitoring of biochemical oxygen demand and toxicity in the environment. The progress confirms that MFC-based biosensors could be used as self-powered portable biosensing devices with great potential in long-term and remote environmental monitoring.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles/métodos , Monitoreo del Ambiente/métodos
20.
Water Sci Technol ; 70(10): 1663-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25429455

RESUMEN

Triphenylmethane (TPM) dye is one of the most prevalent and recalcitrant water contaminants. Magnetic reduced graphene oxide (rGO) is an efficient adsorbent for organic pollutants removal. However, the performance and adsorption kinetics of magnetic rGO towards TPM have not yet been studied. In this study, a magnetic Fe3O4@rGO nano-composite, which could be easily removed from water with a simple magnetic separation step was synthesized and characterized. The magnetic rGO showed fast adsorption rate and high adsorption capacity towards different TPM dyes (the Langmuir monolayer adsorption capacity is 64.93 mg/g for adsorption of crystal violet). The adsorption processes are well-fitted to the pseudo-second-order kinetic model (R(2) > 0.99) and the Langmuir isotherm model (R(2) = 0.9996). Moreover, the magnetic rGO also showed excellent recycling and regeneration capabilities. The results indicated that adsorption with magnetic rGO would be a promising strategy to clean up the TPM contamination.


Asunto(s)
Colorantes/química , Compuestos Férricos/química , Grafito/química , Nanocompuestos/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Adsorción , Cinética , Compuestos de Tritilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA