Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(3): 931-941, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38013500

RESUMEN

Histone deacetylase inhibitors (iHDACs) have been extensively studied as enhancers of therapeutic protein production in recombinant Chinese hamster ovary (CHO) (rCHO) cell cultures. However, the addition of iHDACs reduces the viable cell concentration (VCC) in rCHO cell cultures, thereby reducing their potential to enhance therapeutic protein production. To mitigate the negative effects of iHDACs on VCC, screening using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-based single-gene knockout (KO) library in rCHO cells was performed in the presence of CI994, a member of iHDACs, and 10 potential KO genes that enhanced the VCC of CI994-treated rCHO cells were identified. Among these, Bcor was validated as a promising KO target that improved VCC without negatively affecting the specific productivity in the presence of CI994. Bcor KO increased the VCC and therapeutic protein concentrations in both batch and fed-batch cultures in the presence of CI994. Taken together, these findings highlight the potential of the whole-genome CRISPR/Cas9-based single-gene KO cell library to identify KO target genes for the development of iHDAC-resistant rCHO cells for enhanced therapeutic protein production.


Asunto(s)
Sistemas CRISPR-Cas , Inhibidores de Histona Desacetilasas , Cricetinae , Animales , Cricetulus , Células CHO , Inhibidores de Histona Desacetilasas/farmacología , Proliferación Celular
2.
Metab Eng ; 80: 33-44, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37709006

RESUMEN

High-level expression of recombinant proteins in mammalian cells has long been an area of interest. Inefficient transcription machinery is often an obstacle in achieving high-level expression of recombinant proteins in mammalian cells. Synthetic promoters have been developed to improve the transcription efficiency, but have achieved limited success due to the limited availability of transcription factors (TFs). Here, we present a TF-engineering approach to mitigate the transcriptional bottlenecks of recombinant proteins. This includes: (i) identification of cAMP response element binding protein (CREB) as a candidate TF by searching for TFs enriched in the cytomegalovirus (CMV) promoter-driven high-producing recombinant Chinese hamster ovary (rCHO) cell lines via transcriptome analysis, (ii) confirmation of transcriptional limitation of active CREB in rCHO cell lines, and (iii) direct activation of the transgene promoter by expressing constitutively active CREB at non-cytotoxic levels in rCHO cell lines. With the expression of constitutively active VP16-CREB, the production of therapeutic proteins, such as monoclonal antibody and etanercept, in CMV promoter-driven rCHO cell lines was increased up to 3.9-fold. VP16-CREB was also used successfully with synthetic promoters containing cAMP response elements. Taken together, this strategy to introduce constitutively active TFs into cells is a useful means of overcoming the transcriptional limitations in recombinant mammalian cells.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Infecciones por Citomegalovirus , Cricetinae , Animales , Humanos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Etopósido , Células CHO , Cricetulus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcripción Genética , Activación Transcripcional
3.
Biotechnol Bioeng ; 119(3): 820-831, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34961935

RESUMEN

Small molecule epigenetic modulators that modify epigenetic states in cells are useful tools for regulating gene expression by inducing chromatin remodeling. To identify small molecule epigenetic modulators that enhance recombinant protein expression in Chinese hamster ovary (CHO) cells, we examined eight histone deacetylase inhibitors (iHDACs) and six DNA methyltransferase inhibitors as chemical additives in recombinant CHO (rCHO) cell cultures. Among these, a benzamide-based iHDAC, CI994, was the most effective in increasing monoclonal antibody (mAb) production. Despite suppressing cell growth, the addition of CI994 to mAb-expressing GSR cell cultures at 10 µM resulted in a 2.3-fold increase in maximum mAb concentration due to a 3.0-fold increase in specific mAb productivity (qmAb ). CI994 increased mAb messenger RNA levels and histone H3 acetylation in GSR cells, and chromatin immunoprecipitation-quantitative polymerase chain reaction analysis revealed that CI994 significantly increased the histone H3 acetylation level at the cytomegalovirus promoter driving mAb gene expression, indicating that chromatin remodeling in the promoter region results in enhanced mAb gene transcription and qmAb . Similar beneficial effects of CI994 on mAb production were observed in mAb-expressing CS13-1.00 cells. Collectively, our findings indicate that CI994 increases mAb production in rCHO cell cultures by chromatin remodeling resulting from acetylation of histones in the mAb gene promoter.


Asunto(s)
Formación de Anticuerpos , Técnicas de Cultivo de Célula , Acetilación , Animales , Células CHO , Cricetinae , Cricetulus , Epigénesis Genética
4.
Adv Sci (Weinh) ; : e2405593, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105414

RESUMEN

Rapid and efficient cell line development (CLD) process is essential to expedite therapeutic protein development. However, the performance of widely used glutamine-based selection systems is limited by low selection efficiency, stringency, and the inability to select multiple genes. Therefore, an AND-gate synthetic selection system is rationally designed using split intein-mediated protein ligation of glutamine synthetase (GS) (SiMPl-GS). Split sites of the GS are selected using a computational approach and validated with GS-knockout Chinese hamster ovary cells for their potential to enable cell survival in a glutamine-free medium. In CLD, SiMPl-GS outperforms the wild-type GS by selectively enriching high producers. Unlike wild-type GS, SiMPl-GS results in cell pools in which most cells produce high levels of therapeutic proteins. Harnessing orthogonal split intein pairs further enables the selection of four plasmids with a single selection, streamlining multispecific antibody-producing CLD. Taken together, SiMPl-GS is a simple yet effective means to expedite CLD for therapeutic protein production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA