Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Anal Biochem ; 685: 115390, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37951454

RESUMEN

To alleviate environmental problems caused by using conventional plastics, bioplastics have garnered significant interest as alternatives to petroleum-based plastics. Despite possessing better degradability traits compared to traditional plastics, the degradation of bioplastics still demands a longer duration than initially anticipated. This necessitates the utilization of degradation strains or enzymes to enhance degradation efficiency, ensuring timely degradation. In this study, a novel screening method to identify bioplastic degraders faster was suggested to circumvent the time-consuming and laborious characteristics of solid-based plate assays. This liquid-based colorimetric method confirmed the extracellular esterase activity with p-nitrophenyl esters. It eliminated the needs to prepare plastic emulsion plates at the initial screening system, shortening the time for the overall screening process and providing more quantitative data. p-nitrophenyl hexanoate (C6) was considered the best substrate among the various p-nitrophenyl esters as substrates. The screening was performed in liquid-based 96-well plates, resulting in the discovery of a novel strain, Bacillus sp. SH09, with a similarity of 97.4% with Bacillus licheniformis. Furthermore, clear zone assays, degradation investigations, scanning electron microscopy, and gel permeation chromatography were conducted to characterize the biodegradation capabilities of the new strain, the liquid-based approach offered a swift and less labor-intensive option during the initial stages.


Asunto(s)
Esterasas , Plásticos , Plásticos/química , Esterasas/química , Ensayos Analíticos de Alto Rendimiento , Colorimetría , Biopolímeros
2.
Microb Cell Fact ; 22(1): 171, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37661274

RESUMEN

Polyhydroxyalkanoate (PHA) is one of the most promising materials for replacing petroleum-based plastics, and it can be produced from various renewable biomass sources. In this study, PHA production was conducted using Halomonas sp. YLGW01 utilizing mixed volatile fatty acids (VFAs) as carbon sources. The ratio and concentration of carbon and nitrogen sources were optimized through mixture analysis and organic nitrogen source screening, respectively. It was found that the highest cell dry weight (CDW) of 3.15 g/L and PHA production of 1.63 g/L were achieved when the ratio of acetate to lactate in the mixed VFAs was 0.45:0.55. Furthermore, supplementation of organic nitrogen sources such as soytone resulted in a ninefold increase in CDW (reaching 2.32 g/L) and a 22-fold increase in PHA production (reaching 1.60 g/L) compared to using inorganic nitrogen sources. Subsequently, DO-stat, VFAs consumption rate stat, and pH-stat fed-batch methods were applied to investigate and evaluate PHA productivity. The results showed that when pH-stat-based VFAs feeding was employed, a CDW of 7 g/L and PHA production of 5.1 g/L were achieved within 68 h, with a PHA content of 73%. Overall, the pH-stat fed-batch strategy proved to be effective in enhancing PHA production by Halomonas sp. YLGW01 utilizing VFAs.


Asunto(s)
Halomonas , Polihidroxialcanoatos , Halomonas/genética , Ácidos Grasos Volátiles , Carbono , Ácido Láctico , Nitrógeno
3.
Bioprocess Biosyst Eng ; 45(10): 1719-1729, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36121506

RESUMEN

Polyhydroxybutyrate (PHB) is a bio-based, biodegradable and biocompatible plastic that has the potential to replace petroleum-based plastics. Lignocellulosic biomass is a promising feedstock for industrial fermentation to produce bioproducts such as polyhydroxybutyrate (PHB). However, the pretreatment processes of lignocellulosic biomass lead to the generation of toxic byproducts, such as furfural, 5-HMF, vanillin, and acetate, which affect microbial growth and productivity. In this study, to reduce furfural toxicity during PHB production from lignocellulosic hydrolysates, we genetically engineered Cupriavidus necator NCIMB 11599, by inserting the nicotine amide salvage pathway genes pncB and nadE to increase the NAD(P)H pool. We found that the expression of pncB was the most effective in improving tolerance to inhibitors, cell growth, PHB production and sugar consumption rate. In addition, the engineered strain harboring pncB showed higher PHB production using lignocellulosic hydrolysates than the wild-type strain. Therefore, the application of NAD salvage pathway genes improves the tolerance of Cupriavidus necator to lignocellulosic-derived inhibitors and should be used to optimize PHB production.


Asunto(s)
Cupriavidus necator , Petróleo , Amidas/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Azúcares de la Dieta/metabolismo , Azúcares de la Dieta/farmacología , Furaldehído/farmacología , Inhibidores de Crecimiento/metabolismo , Inhibidores de Crecimiento/farmacología , Hidroxibutiratos/metabolismo , Lignina , NAD/metabolismo , NAD/farmacología , Nicotina/metabolismo , Nicotina/farmacología , Nitrobencenos , Petróleo/metabolismo , Plásticos
4.
Protein Expr Purif ; 152: 46-55, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30055246

RESUMEN

In this study, protease Pph_Pro1 from Pseudoalteromonas phenolica, possessing extracellular proteolytic activity and salt tolerance, was investigated for cloning, expression, and purification purposes. Through optimization, it was determined that optimum soluble recombinant expression was achieved when Pph_Pro1 was co-expressed with the pTf16 vector chaperone in LB medium supplemented with CaCl2. Pph_Pro1 was purified using osmotic shock and immobilized metal-affinity chromatography (IMAC). Isolated Pph_Pro1 activity was measured as 0.44 U/mg using casein as a substrate. Interestingly, Pph_Pro1 displayed halophilic, alkaliphilic, and unexpected thermostable properties. Furthermore, it was resistant to several hydrophilic and hydrophobic organic solvents. Substrate specificity and kinetic values such as Km and Vmax were determined with casein, bovine serum albumin (BSA), and algal waste protein as substrates, indicating that the Pph_Pro1 protease enzyme had a greater affinity for casein. Based on the remarkable characteristics of this Pph_Pro1 protease enzyme, it can potentially be utilized in many biotechnological industries.


Asunto(s)
Proteínas Bacterianas/genética , Escherichia coli/genética , Péptido Hidrolasas/genética , Pseudoalteromonas/enzimología , Proteínas Recombinantes de Fusión/genética , Proteínas Algáceas/química , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/aislamiento & purificación , Cloruro de Calcio/farmacología , Caseínas/química , Cromatografía de Afinidad , Clonación Molecular , Medios de Cultivo/química , Medios de Cultivo/farmacología , Pruebas de Enzimas , Estabilidad de Enzimas , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Péptido Hidrolasas/biosíntesis , Péptido Hidrolasas/aislamiento & purificación , Proteolisis , Pseudoalteromonas/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/aislamiento & purificación , Salinidad , Tolerancia a la Sal/fisiología , Albúmina Sérica Bovina/química , Especificidad por Sustrato
5.
Appl Microbiol Biotechnol ; 102(15): 6515-6523, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29789883

RESUMEN

A gene encoding an endoglucanase belonging to subfamily C of glycoside hydrolase family 45 (GH45) was identified in the brown rot fungus Fomitopsis palustris and functionally expressed in Pichia pastoris. The recombinant protein displayed hydrolytic activities toward various substrates such as carboxymethyl cellulose, phosphoric acid swollen cellulose, glucomannan, lichenan, and ß-glucan. In particular, the enzyme had a unique catalytic efficiency on ß-1,4-glucans rather than mixed ß-1,3/1,4-glucans as compared to other GH45 endoglucanases. The fungal enzyme was relatively thermostable, retaining more than 91.4% activity at 80 °C for 1 h. Site-directed mutagenesis studies revealed that the mutants N95D and D117N had significantly reduced enzymatic activities, indicating that both residues are essential for the catalytic reaction. Our study expands knowledge and understanding of the catalytic mechanism of GH45 subfamily C enzymes and also suggests that this thermostable endoglucanase from F. palustris has great potential in industrial applications.


Asunto(s)
Celulasa/genética , Celulasa/metabolismo , Coriolaceae/enzimología , Proteínas Recombinantes/metabolismo , Secuencia de Aminoácidos , Celulosa/química , Celulosa/metabolismo , Clonación Molecular , Microbiología Industrial , Mutagénesis Sitio-Dirigida , Pichia/genética , Proteínas Recombinantes/genética , Especificidad por Sustrato
6.
Bioprocess Biosyst Eng ; 41(8): 1195-1204, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29737409

RESUMEN

n-Butanol is considered as the next-generation biofuel, because its physiochemical properties are very similar to fossil fuels and it could be produced by Clostridia under anaerobic culture. Due to the difficulties of strict anaerobic culture, a host which can be used with facultative environment was being searched for n-butanol production. As an alternative, Shewanella oneidensis MR-1, which is known as facultative bacteria, was selected as a host and studied. A plasmid containing adhE2 encoding alcohol dehydrogenase, various CoA transferases (ctfAB, atoAD, pct, and ACT), and acs encoding acetyl-CoA synthetase were introduced and examined to S. oneidensis MR-1 to produce n-butanol. As a result, ctfAB, acs, and adhE2 overexpression in S. oneidensis-pJM102 showed the highest n-butanol production in the presence of 2% of N-acetylglucosamine (NAG), 0.3% of butyrate, and 0.1 mM of IPTG for 96 h under microaerobic condition. When more NAG and butyrate were fed, n-butanol production was enhanced, producing up to 160 mg/L of n-butanol. When metal ions or extra electrons were added to S. oneidensis-pJM102 for n-butanol production, metal ion as electron acceptor or supply of extra electron showed no significant effect on n-butanol production. Overall, we made a newly engineered S. oneidensis that could utilize NAG and butyrate to produce n-butanol. It could be used in further microaerobic condition and electricity supply studies.


Asunto(s)
1-Butanol/metabolismo , Proteínas Bacterianas , Butiratos/metabolismo , Microorganismos Modificados Genéticamente , Plásmidos , Shewanella , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Clostridium/genética , Microorganismos Modificados Genéticamente/crecimiento & desarrollo , Microorganismos Modificados Genéticamente/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Shewanella/genética , Shewanella/crecimiento & desarrollo
7.
Bioprocess Biosyst Eng ; 40(10): 1573-1580, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28730324

RESUMEN

Streptomyces, which produces many pharmaceutical antibiotics and anticancer agents, is a genus of soil-dwelling bacteria with numerous regulators that control both primary and secondary metabolism. NdgR is highly conserved in Streptomyces spp. and is known to be involved in antibiotic production, tolerance against shock and physical stress, nitrogen metabolism, leucine metabolism, and N-acetylglucosamine metabolism. As another function of NdgR, we report the involvement of NdgR in glycerol metabolism in S. coelicolor. Initially, a glycerol utilization operon containing gylCABX was found to be up-regulated in an ndgR deletion mutant (BG11) grown in N-acetylglucosamine solid minimal media compared with wild-type strain (M145). BG11 produced more antibiotics with a small amount of glycerol and increased glycerol utilization, yielding higher concentrations of lactate and acetate per cell. Moreover, fatty acid production was also changed in BG11 to produce longer chain fatty acids, phenolic compounds, alkanes, and fatty alcohols. Using a gel retardation assay, NdgR was found to bind the upstream region of gylC, working as a repressor. NdgR is a second regulator of a glycerol utilization operon, for which only one regulator, GylR was previously known.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Glicerol/metabolismo , Operón/fisiología , Streptomyces coelicolor/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba/fisiología , Proteínas Bacterianas/genética , Streptomyces coelicolor/genética , Factores de Transcripción/genética
8.
Int J Biol Macromol ; 254(Pt 1): 127475, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37863147

RESUMEN

Polyhydroxybutyrate (PHB) is a well-known biodegradable bioplastic synthesized by microorganisms and can be produced from volatile fatty acids (VFAs). Among VFAs acetate can be utilized by Halomonas sp. YLGW01 for growth and PHB production. In this study, Halomonas sp. JJY01 was developed through introducing acetyl-CoA acetyltransferase (atoAD) with LacIq-Ptrc promoter into Halomonas sp. YLGW01. The effect of expression of atoAD on acetate was investigated by comparison with acetate consumption and PHB production. Shake-flask study showed that Halomonas sp. JJY01 increased acetate consumption rate, PHB yield and PHB production (0.27 g/L/h, 0.075 g/g, 0.72 g/L) compared to the wild type strain (0.17 g/L/h, 0.016 g/g, 0.11 g/L). In 10 L fermenter scale fed-batch fermentation, the growth of Halomonas sp. JJY01 resulted in higher acetate consumption rate, PHB yield and PHB titer (0.55 g/L/h, 0.091 g/g, 4.6 g/L) than wild type strain (0.35 g/L/h, 0.067 h/h, 2.9 g/L). These findings demonstrate enhanced acetate utilization and PHB production through the introduction of atoAD in Halomonas strains.


Asunto(s)
Halomonas , Hidroxibutiratos , Hidroxibutiratos/metabolismo , Halomonas/genética , Halomonas/metabolismo , Acetil-CoA C-Acetiltransferasa/metabolismo , Polihidroxibutiratos , Acetatos/metabolismo , Poliésteres/metabolismo
9.
Polymers (Basel) ; 15(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36771983

RESUMEN

Coffee waste is an abundant biomass that can be converted into high value chemical products, and is used in various renewable biological processes. In this study, oil was extracted from spent coffee grounds (SCGs) and used for polyhydroxyalkanoate (PHA) production through Pseudomonas resinovorans. The oil-extracted SCGs (OESCGs) were hydrolyzed and used for biohydrogen production through Clostridium butyricum DSM10702. The oil extraction yield through n-hexane was 14.4%, which accounted for 97% of the oil present in the SCGs. OESCG hydrolysate (OESCGH) had a sugar concentration of 32.26 g/L, which was 15.4% higher than that of the SCG hydrolysate (SCGH) (27.96 g/L). Hydrogen production using these substrates was 181.19 mL and 136.58 mL in OESCGH and SCGH media, respectively. The consumed sugar concentration was 6.77 g/L in OESCGH and 5.09 g/L in SCGH media. VFA production with OESCGH (3.58 g/L) increased by 40.9% compared with SCGH (2.54 g/L). In addition, in a fed-batch culture using the extracted oil, cell dry weight was 5.4 g/L, PHA was 1.6 g/L, and PHA contents were 29.5% at 24 h.

10.
J Microbiol Biotechnol ; 33(5): 687-697, 2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-36823146

RESUMEN

Identification of novel, electricity-producing bacteria has garnered remarkable interest because of the various applications of electricigens in microbial fuel cell and bioelectrochemical systems. Shewanella marisflavi BBL25, an electricity-generating microorganism, uses various carbon sources and shows broader sugar utilization than the better-known S. oneidensis MR-1. To determine the sugar-utilizing genes and electricity production and transfer system in S. marisflavi BBL25, we performed an in-depth analysis using whole-genome sequencing. We identified various genes associated with carbon source utilization and the electron transfer system, similar to those of S. oneidensis MR-1. In addition, we identified genes related to hydrogen production systems in S. marisflavi BBL25, which were different from those in S. oneidensis MR-1. When we cultured S. marisflavi BBL25 under anaerobic conditions, the strain produced 427.58 ± 5.85 µl of biohydrogen from pyruvate and 877.43 ± 28.53 µl from xylose. As S. oneidensis MR-1 could not utilize glucose well, we introduced the glk gene from S. marisflavi BBL25 into S. oneidensis MR-1, resulting in a 117.35% increase in growth and a 17.64% increase in glucose consumption. The results of S. marisflavi BBL25 genome sequencing aided in the understanding of sugar utilization, electron transfer systems, and hydrogen production systems in other Shewanella species.


Asunto(s)
Fuentes de Energía Bioeléctrica , Shewanella , Fuentes de Energía Bioeléctrica/microbiología , Shewanella/genética , Glucosa , Carbono , Hidrógeno
11.
Bioresour Technol ; 384: 129290, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37290712

RESUMEN

Macroalgae (seaweed) is considered a favorable feedstock for polyhydroxyalkanoates (PHAs) production owing to its high productivity, low land and freshwater requirement, and renewable nature. Among different microbes Halomonas sp. YLGW01 can utilize algal biomass-derived sugars (galactose and glucose) for growth and PHAs production. Biomass-derived byproducts furfural, hydroxymethylfurfural (HMF), and acetate affects Halomonas sp. YLGW01 growth and poly(3-hydroxybutyrate) (PHB) production i.e., furfural > HMF > acetate. Eucheuma spinosum biomass-derived biochar was able to remove 87.9 % of phenolic compounds from its hydrolysate without affecting sugar concentration. Halomonas sp. YLGW01 grows and accumulates a high amount of PHB at 4 % NaCl. The use of detoxified unsterilized media resulted in high biomass (6.32 ± 0.16 g cdm/L) and PHB production (3.88 ± 0.04 g/L) compared to undetoxified media (3.97 ± 0.24 g cdm/L, 2.58 ± 0.1 g/L). The finding suggests that Halomonas sp. YLGW01 has the potential to valorize macroalgal biomass into PHAs and open a new avenue for renewable bioplastic production.


Asunto(s)
Halomonas , Polihidroxialcanoatos , Algas Marinas , Azúcares , Furaldehído
12.
Int J Biol Macromol ; 236: 123997, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907298

RESUMEN

Petrochemical-based plastics are hardly biodegradable and a major cause of environmental pollution, and polyhydroxybutyrate (PHB) is attracting attention as an alternative due to its similar properties. However, the cost of PHB production is high and is considered the greatest challenge for its industrialization. Here, crude glycerol was used as a carbon source for more efficient PHB production. Among the 18 strains investigated, Halomonas taeanenisis YLGW01 was selected for PHB production due to its salt tolerance and high glycerol consumption rate. Furthermore, this strain can produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3 HV)) with 17 % 3 HV mol fraction when a precursor is added. PHB production was maximized through medium optimization and activated carbon treatment of crude glycerol, resulting in 10.5 g/L of PHB with 60 % PHB content in fed-batch fermentation. Physical properties of the produced PHB were analyzed, i.e., weight average molecular weight (6.8 × 105), number average molecular weight (4.4 × 105), and the polydispersity index (1.53). In the universal testing machine analysis, the extracted intracellular PHB showed a decrease in Young's modulus, an increase in Elongation at break, greater flexibility than authentic film, and decreased brittleness. This study confirmed that YLGW01 is a promising strain for industrial PHB production using crude glycerol.


Asunto(s)
Glicerol , Halomonas , Poliésteres , Plásticos , Hidroxibutiratos
13.
J Biotechnol ; 367: 62-70, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37019156

RESUMEN

Isobutanol is a potential biofuel, and its microbial production systems have demonstrated promising results. In a microbial system, the isobutanol produced is secreted into the media; however, the cells remaining after fermentation cannot be used efficiently during the isobutanol recovery process and are discarded as waste. To address this, we aimed to investigate the strategy of utilizing these remaining cells by combining the isobutanol production system with the indigo production system, wherein the product accumulates intracellularly. Accordingly, we constructed E. coli systems with genes, such as acetolactate synthase gene (alsS), ketol-acid reductoisomerase gene (ilvC), dihydroxyl-acid dehydratase (ilvD), and alpha-ketoisovalerate decarboxylase gene (kivD), for isobutanol production and genes, such as tryptophanase gene (tnaA) and flavin-containing monooxygenase gene (FMO), for indigo production. This system produced isobutanol and indigo simultaneously while accumulating indigo within cells. The production of isobutanol and indigo exhibited a strong linear correlation up to 72 h of production time; however, the pattern of isobutanol and indigo production varied. To our knowledge, this study is the first to simultaneously produce isobutanol and indigo and can potentially enhance the economy of biochemical production.


Asunto(s)
Escherichia coli , Carmin de Índigo , Escherichia coli/genética , Fermentación , Butanoles
14.
Int J Biol Macromol ; 250: 126152, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37558031

RESUMEN

The production cost of biodegradable polymer like polyhydroxybutyrate (PHB) is still higher than that of petroleum-based plastics. A potential solution for reducing its production cost is using a cheap carbon source and avoiding a process of sterilization. In this study, a novel PHB-producing microbial strain, Priestia sp. YH4 was screened from the marine environment using sugarcane molasses as the carbon source without sterilization. Culture conditions, such as carbon, NaCl, temperature, pH, inoculum size, and cultivation time, were optimized for obtaining the highest PHB production by YH4 resulting in 5.94 g/L of dry cell weight (DCW) and 61.7 % of PHB content in the 5 mL culture. In addition, it showed similar PHB production between the cultures with or without sterilization in Marine Broth media. When cultured using only tap water, sugarcane molasses, and NaCl in a 5 L fermenter, 24.8 g/L DCW was produced at 41 h yielding 13.9 g/L PHB. Finally, DSC (Differential Scanning Calorimetry) and GPC (Gel Permeation Chromatography) were used to analyze thermal properties and molecular weights resulting in Tm = 167.2 °C, Tc = 67.3 °C, Mw = 2.85 × 105, Mn = 1.05 × 105, and PDI = 2.7, respectively. Therefore, we showed the feasibility of more economical process for PHB production by finding novel strain, utilizing molasses with minimal media components and avoiding sterilization.

15.
Bioresour Technol ; 359: 127448, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35691503

RESUMEN

A conductive metal compound can be used as a catalyst for enhancing hydrogen production by dark fermentation. This study aimed to identify mechanisms of enhanced hydrogen production by magnetite supplementation. Experiments were performed with lactate and/or magnetite supplementation to confirm that the lactate-utilizing pathway is the key cause of enhanced hydrogen production. Also, ribonucleic acid sample was collected for monitoring gene regulation under each condition. Hydrogen production was significantly enhanced by approximately 25.6% and 58.9%, respectively, via magnetite alone and with lactate. Moreover, the expression of genes involved in hydrogen production, including pyruvate ferredoxin oxidoreductase, hydrogenase, and ferredoxin, via magnetite alone and with lactate was upregulated by 0.26, 0.71, and 3.50 and 1.06, 2.14, and 1.94 times, respectively.


Asunto(s)
Clostridium butyricum , Aceleración , Clostridium/metabolismo , Clostridium butyricum/metabolismo , Suplementos Dietéticos , Fermentación , Óxido Ferrosoférrico/metabolismo , Hidrógeno/metabolismo , Ácido Láctico/metabolismo
16.
Polymers (Basel) ; 14(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35808670

RESUMEN

Polyhydroxyalkanoate (PHA) is a biodegradable plastic that can be used to replace petroleum-based plastic. In addition, as a medium-chain-length PHA (mcl-PHA), it can be used to provide elastomeric properties in specific applications. Because of these characteristics, recently, there has been much research on mcl-PHA production using inexpensive biomass materials as substrates. In this study, mcl-PHA producers were screened using alkanes (n-octane, n-decane, and n-dodecane) as sources of carbon. The amount of PHA produced by Pseudomonas resinovorans using sole n-octane, n-decane, or n-dodecane was 0.48 g/L, 0.27 g/L, or 0.07 g/L, respectively, while that produced using mixed alkane was 0.74 g/L. As a larger amount of PHA was produced using mixed alkane compared with sole alkane, a statistical mixture analysis was used to determine the optimal ratio of alkanes in the mixture. The optimal ratio predicted by the analysis was a medium with 9.15% n-octane, 6.44% n-decane, and 4.29% n-dodecane. In addition, through several concentration-specific experiments, the optimum concentrations of nitrogen and phosphorus for cell growth and maximum PHA production were determined as 0.05% and 1.0%, respectively. Finally, under the determined optimal conditions, 2.1 g/L of mcl-PHA and 60% PHA content were obtained using P. resinovorans in a 7 L fermenter.

17.
Chemosphere ; 307(Pt 2): 135787, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35872060

RESUMEN

Leaching of cobalt and nickel into diverse water streams has become an environmental hazard and is continuously impacting human health through the food chain. Solvent extraction is the most widely accepted for separating these metals, but traditional extractants employed in conjunction with molecular diluents often lack selectivity and caused major environmental hurdles. Therefore, the development of cost-effective, environmentally friendly technologies for recovering these heavy metals has been strongly encouraged in recent years. Herein, two halogens free, low viscous, biocompatible fatty acid-based hydrophobic ionic liquids (ILs), i.e., methytrioctylammonium oleate, methytrioctylammonium linoleate were synthesized, analytically characterized and employed for recovery of cobalt, Co(II) and nickel, Ni(II) from their aqueous solutions. Extraction behaviour of Co(II) and Ni(II) was further evaluated by varying equilibrium time, ILs molar concentration, metal loading, and temperature. Thermodynamic parameters such as enthalpy change and Gibbs free energy change were also studied during extraction process. Slope analysis suggested that the extraction mechanism was an exothermic process that followed ion-transfer from the aqueous phase to the organic phase. Results showed that both fatty acid based-ILs were found to be capable of extracting >99% of Co(II) and Ni(II) from aqueous solutions at 298 K, in 15 min of shaking time using a 1:1 (org: aq.) ratio at low concentrations of 2.5-10 g L-1. Furthermore, for methyltrioctylammonium oleate IL, Co(II) extraction was selectively preferred over Ni(II) extraction when the metal concentration was increased to above to 10 g L-1. The stripping results showed that 2 M H2SO4, and 2 M HCl successfully stripped out >99% of Co(II) and Ni(II) from the organic phase, respectively compared to HNO3.


Asunto(s)
Compuestos de Amonio , Líquidos Iónicos , Metales Pesados , Cobalto/química , Ácidos Grasos , Humanos , Líquidos Iónicos/química , Iones , Ácido Linoleico , Metales Pesados/química , Níquel/química , Ácido Oléico , Agua/química
18.
Bioresour Technol ; 359: 127499, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35718248

RESUMEN

The present study deals with the utilization of lignocellulosic hydrolysate-based carbon source for exopolysaccharide (EPS) production using newly reported marine Echinicola sediminis BBL-M-12. This bacterium produced 7.56 g L-1 and 5.32 g L-1 of EPS on supplementing 30 g L-1 glucose and 10 g L-1 xylose as the sole carbon source, respectively. Whereas on feeding Miscanthus hydrolysate (MCH) with glucose content adjusting to 20 g L-1, E. sediminis BBL-M-12 produced 6.18 g L-1 of EPS. The inhibitors study showed bacterium could tolerate higher concentrations of fermentation inhibitors include furfural (0.05%), 5-hydroxymethylfurfural (0.1%), vanillin (0.1%) and acetate (0.5%). Moreover, the EPS composition was greatly altered with the type and concentration of carbon source supplied, although ß-D-Glucopyranose, ß-D-Galactopyranose, and ß-D-Xylopyranose were the dominant monomers detected. Interestingly, E. sediminis BBL-M-12 EPS revealed excellent environmental applications like clay flocculation, oil emulsification, and removal of humic acid, textile dye, and heavy metal from the aqueous phase.


Asunto(s)
Carbono , Lignina , Fermentación , Glucosa
19.
Int J Biol Macromol ; 201: 653-661, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35038470

RESUMEN

Polyhydroxyalkanoates (PHAs) and their derivatives are biopolymers that have the potential of replacing petroleum-based plastics and can be produced and degraded via bacterial metabolism. However, there are only a few studies on polyhydroxybutyrate (PHB) production using lactate, one of the major waste organic acids that could be implemented in the production of polylactic acid (PLA). Herein, we screened and characterized the PHA-producing microbial strains isolated from saltern soil from Docho Island (South Korea). Among the 24 identified microorganisms that can use lactate as a carbon source, Bacillus sp. YHY22, a newly reported strain, produced the highest amount of PHB: 4.05 g/L with 6.25 g/L dry cell weight, which is 64.7% PHB content under optimal production conditions. Bacillus sp. YHY22 could form the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer with propionate addition. Moreover, Bacillus sp. YHY22 produced PHB in non-sterilized 2% lactate and 8% NaCl marine broth culture medium, suggesting that its production can occur in high salinity media without additional sterilization steps, rendering fermentation cost- and time-efficient.


Asunto(s)
Bacillus , Polihidroxialcanoatos , Bacillus/metabolismo , Biopolímeros/metabolismo , Hidroxibutiratos/metabolismo , Ácido Láctico/metabolismo , Poliésteres/metabolismo
20.
Int J Biol Macromol ; 208: 809-818, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35364206

RESUMEN

Polyhydroxybutyrate (PHB) is a potential substitute for plastics derived from fossil fuels, owing to its biodegradable and biocompatible properties. Lignocellulosic biomass could be used to reduce PHB production costs; however, the co-utilization of sugars, such as glucose and xylose, without catabolite repression is a difficult problem to be solved. Here, we selected a novel Loktanella sp. SM43 from a marine environment and optimized the conditions for PHB production. Loktanella sp. SM43 showed high PHB production (66.5% content) from glucose. When glucose and xylose were used together, this strain showed high utilization of both substrates compared to other high PHB-producers such as Halomonas sp. and Cupriavidus necator, which showed glucose preference. Loktanella sp. SM43 showed high growth and PHB production with lignocellulosic hydrolysates. When pine tree hydrolysates were used, PHB production was the highest at 3.66 ± 0.01 g/L, followed by Miscanthus (3.46 ± 0.09 g/L) and barley straw hydrolysate (3.36 ± 0.36 g/L). Overall, these results reveal the potential of Loktanella sp. SM43 to produce PHB using various lignocellulosic hydrolysates as feedstock and the first systematic study for PHB production with Loktanella sp. The approach of screening novel strains is a strategy to overcome co-utilization of sugars without genetic engineering.


Asunto(s)
Glucosa , Xilosa , Biomasa , Fermentación , Hidroxibutiratos/química , Lignina , Azúcares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA