Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Physiol ; 64(9): 1106-1117, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37421143

RESUMEN

Plant cells lack centrosomes and instead utilize acentrosomal microtubule organizing centers (MTOCs) to rapidly increase the number of microtubules at the onset of spindle assembly. Although several proteins required for MTOC formation have been identified, how the MTOC is positioned at the right place is not known. Here, we show that the inner nuclear membrane protein SUN2 is required for MTOC association with the nuclear envelope (NE) during mitotic prophase in the moss Physcomitrium patens. In actively dividing protonemal cells, microtubules accumulate around the NE during prophase. In particular, regional MTOC is formed at the apical surface of the nucleus. However, microtubule accumulation around the NE was impaired and apical MTOCs were mislocalized in sun2 knockout cells. Upon NE breakdown, the mitotic spindle was assembled with mislocalized MTOCs. However, completion of chromosome alignment in the spindle was delayed; in severe cases, the chromosome was transiently detached from the spindle body. SUN2 tended to localize to the apical surface of the nucleus during prophase in a microtubule-dependent manner. Based on these results, we propose that SUN2 facilitates the attachment of microtubules to chromosomes during spindle assembly by localizing microtubules to the NE. MTOC mispositioning was also observed during the first division of the gametophore tissue. Thus, this study suggests that microtubule-nucleus linking, a well-known function of SUN in animals and yeast, is conserved in plants.


Asunto(s)
Bryopsida , Membrana Nuclear , Animales , Membrana Nuclear/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Cromosomas , Bryopsida/genética
2.
Plant Cell Physiol ; 64(3): 336-351, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36639938

RESUMEN

The precise control of cell growth and proliferation underpins the development of plants and animals. These factors affect the development and size of organs and the body. In plants, the growth and proliferation of cells are regulated by environmental stimuli and intrinsic signaling, allowing different cell types to have specific growth and proliferation characteristics. An increasing number of factors that control cell division and growth have been identified. However, the mechanisms underlying cell type-specific cell growth and proliferation characteristics in the normal developmental context are poorly understood. Here, we analyzed the rice mutant osmo25a1, which is defective in the progression of embryogenesis. The osmo25a1 mutant embryo developed incomplete embryonic organs, such as the shoot and root apical meristems. It showed a delayed progression of embryogenesis, associated with the reduced mitotic activity. The causal gene of this mutation encodes a member of the Mouse protein-25A (MO25A) family of proteins that have pivotal functions in a signaling pathway that governs cell proliferation and polarity in animals, yeasts and filamentous fungi. To elucidate the function of plant MO25A at the cellular level, we performed a functional analysis of MO25A in the moss Physcomitrium patens. Physcomitrium patens MO25A was uniformly distributed in the cytoplasm and functioned in cell tip growth and the initiation of cell division in stem cells. Overall, we demonstrated that MO25A proteins are conserved factors that control cell proliferation and growth.


Asunto(s)
Bryopsida , Proteínas de Plantas , Animales , Ratones , Proteínas de Plantas/metabolismo , Células Vegetales/metabolismo , Plantas/metabolismo , Proliferación Celular , Morfogénesis , Bryopsida/metabolismo , Mamíferos/metabolismo
3.
Cell Struct Funct ; 44(2): 95-104, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31548446

RESUMEN

KCBP is a microtubule (MT) minus-end-directed kinesin widely conserved in plants. It was shown in Arabidopsis that KCBP controls trichome cell shape by orchestrating MT and actin cytoskeletons using its tail and motor domains. In contrast, the KCBP knockout (KO) line in the moss Physcomitrella patens showed a defect in nuclear and organelle positioning in apical stem cells. Moss KCBP is postulated to transport the nucleus and chloroplast via direct binding to their membranes, since it binds to and transports liposomes composed of phospholipids in vitro. However, domains required for cargo transport in vivo have not been mapped. Here, we performed a structure-function analysis of moss KCBP. We found that the FERM domain in the tail region, which is known to bind to lipids as well as other proteins, is essential for both nuclear and chloroplast positioning, whereas the proximal MyTH4 domain plays a supporting role in chloroplast transport. After anaphase but prior to nuclear envelope re-formation, KCBP accumulates on the chromosomes, in particular at the centromeric region in a FERM-dependent manner. In the KCBP KO line, the rate of poleward chromosome movement in anaphase was reduced and lagging chromosomes occasionally appeared. These results suggest that KCBP binds to non-membranous naked chromosomes via an unidentified protein(s) for their transport. Finally, the liverwort orthologue of KCBP rescued the chromosome/chloroplast mis-positioning of the moss KCBP KO line, suggesting that the cargo transport function is conserved at least in bryophytes.Key words: kinesin, mitosis, chromosome segregation, kinetochore, dynein.


Asunto(s)
Anafase , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Cromátides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Unión a Calmodulina/deficiencia , Proteínas de Unión a Calmodulina/genética
4.
Methods Mol Biol ; 2604: 143-158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773231

RESUMEN

Visualizing cytoskeleton dynamics at high spatiotemporal resolution provides valuable insights into the way the dynamics change as well as its interactions with multiple proteins in order to maintain cellular function. Oblique illumination fluorescent microscopy is a popular technique to image cellular events localized near the plasma membrane. In this chapter, we provide detailed protocols for high-resolution cytoskeleton imaging using protonema and gametophore cells of the moss Physcomitrella (Physcomitrium patens) in the microfluidic device. These include preparation of the polydimethylsiloxane (PDMS) device, culture of moss cells, and both short- and long-term oblique illumination fluorescent microscopy. We also describe how to introduce to, and wash out from, the device chemical compounds, such as microtubule-disrupting drugs, during live-cell imaging.


Asunto(s)
Bryopsida , Microscopía/métodos , Microtúbulos , Dispositivos Laboratorio en un Chip
5.
Nat Plants ; 9(5): 733-748, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37142749

RESUMEN

Kinesin-1, also known as conventional kinesin, is widely used for microtubule plus-end-directed (anterograde) transport of various cargos in animal cells. However, a motor functionally equivalent to the conventional kinesin has not been identified in plants, which lack the kinesin-1 genes. Here we show that plant-specific armadillo repeat-containing kinesin (ARK) is the long sought-after versatile anterograde transporter in plants. In ARK mutants of the moss Physcomitrium patens, the anterograde motility of nuclei, chloroplasts, mitochondria and secretory vesicles was suppressed. Ectopic expression of non-motile or tail-deleted ARK did not restore organelle distribution. Another prominent macroscopic phenotype of ARK mutants was the suppression of cell tip growth. We showed that this defect was attributed to the mislocalization of actin regulators, including RopGEFs; expression and forced apical localization of RopGEF3 partially rescued the growth phenotype of the ARK mutant. The mutant phenotypes were partially rescued by ARK homologues in Arabidopsis thaliana, suggesting the conservation of ARK functions in plants.


Asunto(s)
Bryopsida , Cinesinas , Arabidopsis/genética , Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Dominios Proteicos
6.
Nat Commun ; 13(1): 2488, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513464

RESUMEN

Asymmetric cell division (ACD) underlies the development of multicellular organisms. In animal ACD, the cell division site is determined by active spindle-positioning mechanisms. In contrast, it is considered that the division site in plants is determined prior to mitosis by the microtubule-actin belt known as the preprophase band (PPB) and that the localization of the mitotic spindle is typically static and does not govern the division plane. However, in some plant species, ACD occurs in the absence of PPB. Here, we isolate a hypomorphic mutant of the conserved microtubule-associated protein TPX2 in the moss Physcomitrium patens (Physcomitrella) and observe spindle motility during PPB-independent cell division. This defect compromises the position of the division site and produces inverted daughter cell sizes in the first ACD of gametophore (leafy shoot) development. The phenotype is rescued by restoring endogenous TPX2 function and, unexpectedly, by depolymerizing actin filaments. Thus, we identify an active spindle-positioning mechanism that, reminiscent of acentrosomal ACD in animals, involves microtubules and actin filaments, and sets the division site in plants.


Asunto(s)
Bryopsida , División Celular Asimétrica , Bryopsida/genética , Microtúbulos/metabolismo , Mitosis , Huso Acromático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA