RESUMEN
The urgency for new materials in oncology is immediate. In this study we have developed the g-C3N4, a graphitic-like structure formed by periodically linked tris-s-triazine units. The g-C3N4has been synthesized by a simple and fast thermal process. XRD has shown the formation of the crystalline sheet with a compacted structure. The graphite-like structure and the functional groups have been shown by Raman and FTIR spectroscopy. TEM image and AFM revealed the porous composed of five or six C-N layers stacked. DRS and Photoluminescence analyses confirmed the structure with band gap of 2.87 eV and emission band at 448 nm in different wavelengths excitation conditions. The biological results showed inhibitory effect on cancer cell lines and non-toxic effect in normal cell lines. To the best of our knowledge, this is the first work demonstrating the cytotoxic effects of 2D g-C3N4in a cancer cell line, without any external or synergistic influence. The biodistribution/tissue accumulation showed that g-C3N4present a tendency to accumulation on the lung in the first 2 h, but after 24 h the profile of the biodistribution change and it is found mainly in the liver. Thus, 2D-g-C3N4showed great potential for the treatment of several cancer types.
Asunto(s)
Supervivencia Celular , Grafito/síntesis química , Grafito/metabolismo , Compuestos de Nitrógeno/síntesis química , Compuestos de Nitrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Humanos , Distribución TisularRESUMEN
Carbon-derived compounds are gaining traction in the scientific community because of their unique properties, such as conductivity and strength, and promising innovations in technology and medicine. Graphitic nitride carbon (g-C3N4) stands out among these compounds because of its potential in antitumor therapies. This study aimed to assess g-C3N4's antitumor potential and cytotoxic mechanisms. Prostate cancer (DU-145) and glioblastoma (U87) cell lines were used to evaluate antitumor effects, whereas RAW 264.7 and HFF-1 non-tumor cells were used for selectivity evaluation. The synthesized g-C3N4 particles underwent comprehensive characterization, including the assessment of particle size, morphology, and oxygen content, employing various techniques, such as X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and atomic force microscopy. The results indicated that g-C3N4 significantly affected tumor cell proliferation and viability, exhibiting high cytotoxicity within 48 h. In non-tumor cells, minimal effects on proliferation were observed, except for damage to the cell membranes of RAW 264.7 cells. Moreover, g-C3N4 changed the cell morphology and ultrastructure, affecting cell migration in U87 cells and potentially enhancing migration in RAW 264.7 cells. Biochemical assays in Balb/C mice revealed alterations in alanine aminotransferase, aspartate aminotransferase, and amylase levels. In conclusion, g-C3N4 demonstrated promising antitumor effects with minimal toxicity to non-tumor cells, suggesting its potential in neoplasm treatment.