Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angiogenesis ; 26(1): 37-52, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35902510

RESUMEN

Orbital cavernous venous malformation (OCVM) is a sporadic vascular anomaly of uncertain etiology characterized by abnormally dilated vascular channels. Here, we identify a somatic missense mutation, c.121G > T (p.Gly41Cys) in GJA4, which encodes a transmembrane protein that is a component of gap junctions and hemichannels in the vascular system, in OCVM tissues from 25/26 (96.2%) individuals with OCVM. GJA4 expression was detected in OCVM tissue including endothelial cells and the stroma, through immunohistochemistry. Within OCVM tissue, the mutation allele frequency was higher in endothelial cell-enriched fractions obtained using magnetic-activated cell sorting. Whole-cell voltage clamp analysis in Xenopus oocytes revealed that GJA4 c.121G > T (p.Gly41Cys) is a gain-of-function mutation that leads to the formation of a hyperactive hemichannel. Overexpression of the mutant protein in human umbilical vein endothelial cells led to a loss of cellular integrity, which was rescued by carbenoxolone, a non-specific gap junction/hemichannel inhibitor. Our data suggest that GJA4 c.121G > T (p.Gly41Cys) is a potential driver gene mutation for OCVM. We propose that hyperactive hemichannel plays a role in the development of this vascular phenotype.


Asunto(s)
Mutación con Ganancia de Función , Malformaciones Vasculares , Humanos , Células Endoteliales , Uniones Comunicantes/genética , Mutación , Venas , Malformaciones Vasculares/metabolismo
2.
Ann Neurol ; 91(3): 317-328, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35064929

RESUMEN

OBJECTIVE: This study aimed to elucidate the molecular features of inclusion body myositis (IBM). METHODS: We performed RNA sequencing analysis of muscle biopsy samples from 67 participants, consisting of 58 myositis patients with the pathological finding of CD8-positive T cells invading non-necrotic muscle fibers expressing major histocompatibility complex class I (43 IBM, 6 polymyositis, and 9 unclassifiable myositis), and 9 controls. RESULTS: Cluster analysis, principal component analysis, and pathway analysis showed that differentially expressed genes and pathways identified in IBM and polymyositis were mostly comparable. However, pathways related to cell adhesion molecules were upregulated in IBM as compared with polymyositis and controls (p < 0.01). Notably, CDH1, which encodes the epidermal cell junction protein cadherin 1, was overexpressed in the muscles of IBM, which was validated by another RNA sequencing dataset from previous publications. Western blotting confirmed the presence of mature cadherin 1 protein in the muscles of IBM. Immunohistochemical staining confirmed the positivity for anti-cadherin 1 antibody in the muscles of IBM, whereas there was no muscle fiber positive for anti-cadherin 1 antibody in immune-mediated necrotizing myopathy, antisynthetase syndrome, and controls. The fibers stained with anti-cadherin 1 antibody did not have rimmed vacuoles or abnormal protein accumulation. Experimental skeletal muscle regeneration and differentiation systems showed that CDH1 is expressed during skeletal muscle regeneration and differentiation. INTERPRETATION: CDH1 was detected as a differentially expressed gene, and immunohistochemistry showed that cadherin 1 exists in the muscles of IBM, whereas it was rarely seen in those of other idiopathic inflammatory myopathies. Cadherin 1 upregulation in muscle could provide a valuable clue to the pathological mechanisms of IBM. ANN NEUROL 2022;91:317-328.


Asunto(s)
Cadherinas/metabolismo , Músculo Esquelético/metabolismo , Miositis por Cuerpos de Inclusión/metabolismo , Transcriptoma , Anciano , Anciano de 80 o más Años , Cadherinas/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miositis por Cuerpos de Inclusión/genética
3.
Nucleic Acids Res ; 49(5): 2700-2720, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33590099

RESUMEN

In animal gonads, transposable elements are actively repressed to preserve genome integrity through the PIWI-interacting RNA (piRNA) pathway. In mice, piRNAs are abundantly expressed in male germ cells, and form effector complexes with three distinct PIWIs. The depletion of individual Piwi genes causes male-specific sterility with no discernible phenotype in female mice. Unlike mice, most other mammals have four PIWI genes, some of which are expressed in the ovary. Here, purification of PIWI complexes from oocytes of the golden hamster revealed that the size of the PIWIL1-associated piRNAs changed during oocyte maturation. In contrast, PIWIL3, an ovary-specific PIWI in most mammals, associates with short piRNAs only in metaphase II oocytes, which coincides with intense phosphorylation of the protein. An improved high-quality genome assembly and annotation revealed that PIWIL1- and PIWIL3-associated piRNAs appear to share the 5'-ends of common piRNA precursors and are mostly derived from unannotated sequences with a diminished contribution from TE-derived sequences, most of which correspond to endogenous retroviruses. Our findings show the complex and dynamic nature of biogenesis of piRNAs in hamster oocytes, and together with the new genome sequence generated, serve as the foundation for developing useful models to study the piRNA pathway in mammalian oocytes.


Asunto(s)
Proteínas Argonautas/metabolismo , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Proteínas Argonautas/genética , Femenino , Genómica , Masculino , Mesocricetus , Metafase , Fosforilación , ARN Interferente Pequeño/genética , Testículo/metabolismo
4.
Genome Res ; 29(6): 1009-1022, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31123080

RESUMEN

Caenorhabditis elegans was the first multicellular eukaryotic genome sequenced to apparent completion. Although this assembly employed a standard C. elegans strain (N2), it used sequence data from several laboratories, with DNA propagated in bacteria and yeast. Thus, the N2 assembly has many differences from any C. elegans available today. To provide a more accurate C. elegans genome, we performed long-read assembly of VC2010, a modern strain derived from N2. Our VC2010 assembly has 99.98% identity to N2 but with an additional 1.8 Mb including tandem repeat expansions and genome duplications. For 116 structural discrepancies between N2 and VC2010, 97 structures matching VC2010 (84%) were also found in two outgroup strains, implying deficiencies in N2. Over 98% of N2 genes encoded unchanged products in VC2010; moreover, we predicted ≥53 new genes in VC2010. The recompleted genome of C. elegans should be a valuable resource for genetics, genomics, and systems biology.


Asunto(s)
Caenorhabditis elegans/genética , Genoma de los Helmintos , Genómica , Animales , Proteínas de Caenorhabditis elegans/genética , Biología Computacional/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados
5.
J Med Genet ; 58(10): 701-711, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33067351

RESUMEN

BACKGROUND: Although 60% of patients with de novo neurofibromatosis type 2 (NF2) are presumed to have mosaic NF2, the actual diagnostic rate of this condition remains low at around 20% because of the existing difficulties in detecting NF2 variants with low variant allele frequency (VAF). Here, we examined the correlation between the genotype and phenotype of mosaic NF2 after improving the diagnostic rate of mosaic NF2. METHODS: We performed targeted deep sequencing of 36 genes including NF2 using DNA samples from multiple tissues (blood, buccal mucosa, hair follicle and tumour) of 53 patients with de novo NF2 and elucidated their genotype-phenotype correlation. RESULTS: Twenty-four patients (45.2%) had the NF2 germline variant, and 20 patients with NF2 (37.7%) had mosaic NF2. The mosaic NF2 phenotype was significantly different from that in patients with NF2 germline variant in terms of distribution of NF2-related disease, tumour growth rate and hearing outcome. The behaviour of schwannoma correlated to the extent of VAF with NF2 variant in normal tissues unlike meningioma. CONCLUSION: We have improved the diagnostic rate of mosaic NF2 compared with that of previous studies by targeted deep sequencing of DNA from multiple tissues. Many atypical patients with NF2 diagnosed with 'unilateral vestibular schwannoma' or 'multiple meningiomas' presumably have mosaic NF2. Finally, we suggest that the highly diverse phenotype of NF2 could result not only from the type and location of NF2 variant but also the extent of VAF in the NF2 variant within normal tissue DNA.


Asunto(s)
Genes de la Neurofibromatosis 2 , Secuenciación de Nucleótidos de Alto Rendimiento , Mosaicismo , Mutación , Neurofibromatosis 2/diagnóstico , Neurofibromatosis 2/genética , Fenotipo , Biología Computacional/métodos , Análisis Mutacional de ADN , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Técnicas de Amplificación de Ácido Nucleico , Análisis de Secuencia de ADN
6.
Neurogenetics ; 22(1): 11-17, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32815063

RESUMEN

Our objective was to investigate the frequency of KIF5A variants in amyotrophic lateral sclerosis (ALS) and the clinical characteristics of familial ALS (FALS) associated with variants in KIF5A. Whole-exome sequence analysis was performed for a Japanese series of 43 families with FALS and 444 patients with sporadic ALS (SALS), in whom causative variants had not been identified. We compared the frequencies of rare variants (MAF < 0.01) in KIF5A, including missense and loss of function (LoF) variants, between ALS and control subjects (n = 1163). Clinical characteristics of patients with FALS carrying pathogenic variants in KIF5A were also described. LoF variants were identified only in the probands of two families with FALS, both of which were 3' splice-site variants leading to exon skipping and an altered C-terminal domain, located in the mutational hotspot causing FALS, and were considered to be pathogenic for FALS. Rare missense variants in KIF5A were identified in five patients with SALS (1.13%) and 11 control subjects (0.95%, carrier frequency), which were not significantly different. Consequently, the pathogenic LoF variants in KIF5A accounted for 2.1% of all FALS families in this study. These patients suffered from ALS characteristically associated with the predominant involvement of upper motor neuron. In conclusion, we identified two pathogenic splice-site variants in KIF5A in the probands in two Japanese families with FALS, which altered the C-terminal region of KIF5A. Our findings broaden the phenotype spectrum of ALS associated with variants in KIF5A in the Japanese series.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Predisposición Genética a la Enfermedad/genética , Cinesinas/genética , Mutación/genética , Adulto , Esclerosis Amiotrófica Lateral/diagnóstico , Pueblo Asiatico/genética , Femenino , Estudios de Asociación Genética , Humanos , Japón , Masculino , Persona de Mediana Edad
7.
J Hum Genet ; 66(3): 237-241, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32920598

RESUMEN

Loss-of-function (LoF) variants in NEK1 have recently been reported to be associated with amyotrophic lateral sclerosis (ALS). In this study, we investigated the association of NEK1 LoF variants with an increased risk of sporadic ALS (SALS) and the clinical characteristics of patients with SALS carrying LoF variants in a Japanese case series. Whole-exome sequencing analysis was performed for a series of 446 SALS patients in whom pathogenic variants in familial ALS-causative genes have not been identified and 1163 healthy control subjects in our Japanese series. We evaluated LoF variants, defined as nonsense, splice-site disrupting single-nucleotide variants (SNVs), or short insertion/deletion (indel) variants predicted to cause frameshifts in NEK1. We identified seven NEK1 LoF variants in patients with SALS (1.57%), whereas only one was identified in control subjects (0.086%) (P = 0.00073, Fisher's exact test). This finding is consistent with those in recent reports from other regions in the world. In conclusion, we demonstrated that NEK1 LoF variants are also associated with an increased risk of SALS in the Japanese population.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Pueblo Asiatico/genética , Mutación con Pérdida de Función , Quinasa 1 Relacionada con NIMA/deficiencia , Edad de Inicio , Anciano , Esclerosis Amiotrófica Lateral/etnología , Esclerosis Amiotrófica Lateral/psicología , Codón sin Sentido , Trastornos del Conocimiento/genética , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Mutación INDEL , Masculino , Persona de Mediana Edad , Mutación , Quinasa 1 Relacionada con NIMA/genética , Quinasa 1 Relacionada con NIMA/fisiología , Polimorfismo de Nucleótido Simple , Isoformas de Proteínas/genética , Sitios de Empalme de ARN/genética , Secuenciación del Exoma
8.
Hum Mutat ; 41(8): 1447-1460, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32485067

RESUMEN

A heterozygous deletion at Xq27.3q28 including FMR1, AFF2, and IDS causing intellectual disability and characteristic facial features is very rare in females, with only 10 patients having been reported. Here, we examined two female patients with different clinical features harboring the Xq27.3q28 deletion and determined the chromosomal breakpoints. Moreover, we assessed the X chromosome inactivation (XCI) in peripheral blood from both patients. Both patients had an almost overlapping deletion at Xq27.3q28, however, the more severe patient (Patient 1) showed skewed XCI of the normal X chromosome (79:21) whereas the milder patient (Patient 2) showed random XCI. Therefore, deletion at Xq27.3q28 critically affected brain development, and the ratio of XCI of the normal X chromosome greatly affected the clinical characteristics of patients with deletion at Xq27.3q28. As the chromosomal breakpoints were determined, we analyzed a change in chromatin domains termed topologically associated domains (TADs) using published Hi-C data on the Xq27.3q28 region, and found that only patient 1 had a possibility of a drastic change in TADs. The altered chromatin topologies on the Xq27.3q28 region might affect the clinical features of patient 1 by changing the expression of genes just outside the deletion and/or the XCI establishment during embryogenesis resulting in skewed XCI.


Asunto(s)
Deleción Cromosómica , Discapacidad Intelectual/genética , Inactivación del Cromosoma X , Preescolar , Cromosomas Humanos X , Análisis Citogenético , Femenino , Humanos , Lactante , Japón , Proteína Nuclear Ligada al Cromosoma X/genética
9.
PLoS Genet ; 13(6): e1006853, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28636652

RESUMEN

Triple-negative breast cancer (TNBC) cells do not express estrogen receptors, progesterone receptors, or human epidermal growth factor receptor 2. Currently, apart from poly ADP-ribose polymerase inhibitors, there are few effective therapeutic options for this type of cancer. Here, we present comprehensive characterization of the genetic alterations in TNBC performed by high coverage whole genome sequencing together with transcriptome and whole exome sequencing. Silencing of the BRCA1 gene impaired the homologous recombination pathway in a subset of TNBCs, which exhibited similar phenotypes to tumors with BRCA1 mutations; they harbored many structural variations (SVs) with relative enrichment for tandem duplication. Clonal analysis suggested that TP53 mutations and methylation of CpG dinucleotides in the BRCA1 promoter were early events of carcinogenesis. SVs were associated with driver oncogenic events such as amplification of MYC, NOTCH2, or NOTCH3 and affected tumor suppressor genes including RB1, PTEN, and KMT2C. Furthermore, we identified putative TGFA enhancer regions. Recurrent SVs that affected the TGFA enhancer region led to enhanced expression of the TGFA oncogene that encodes one of the high affinity ligands for epidermal growth factor receptor. We also identified a variety of oncogenes that could transform 3T3 mouse fibroblasts, suggesting that individual TNBC tumors may undergo a unique driver event that can be targetable. Thus, we revealed several features of TNBC with clinically important implications.


Asunto(s)
Proteína BRCA1/genética , Transcriptoma/genética , Neoplasias de la Mama Triple Negativas/genética , Proteína p53 Supresora de Tumor/genética , Células 3T3 , Animales , Metilación de ADN/genética , Exoma/genética , Femenino , Amplificación de Genes , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Recombinación Homóloga/genética , Humanos , Ratones , Mutación , Proteínas de Neoplasias/genética , Regiones Promotoras Genéticas , Neoplasias de la Mama Triple Negativas/patología
10.
Neurobiol Dis ; 130: 104516, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31229688

RESUMEN

Spinocerebellar ataxia 42 (SCA42) is a neurodegenerative disorder recently shown to be caused by c.5144G > A (p.Arg1715His) mutation in CACNA1G, which encodes the T-type voltage-gated calcium channel CaV3.1. Here, we describe a large Japanese family with SCA42. Postmortem pathological examination revealed severe cerebellar degeneration with prominent Purkinje cell loss without ubiquitin accumulation in an SCA42 patient. To determine whether this mutation causes ataxic symptoms and neurodegeneration, we generated knock-in mice harboring c.5168G > A (p.Arg1723His) mutation in Cacna1g, corresponding to the mutation identified in the SCA42 family. Both heterozygous and homozygous mutants developed an ataxic phenotype from the age of 11-20 weeks and showed Purkinje cell loss at 50 weeks old. Degenerative change of Purkinje cells and atrophic thinning of the molecular layer were conspicuous in homozygous knock-in mice. Electrophysiological analysis of Purkinje cells using acute cerebellar slices from young mice showed that the point mutation altered the voltage dependence of CaV3.1 channel activation and reduced the rebound action potentials after hyperpolarization, although it did not significantly affect the basic properties of synaptic transmission onto Purkinje cells. Finally, we revealed that the resonance of membrane potential of neurons in the inferior olivary nucleus was decreased in knock-in mice, which indicates that p.Arg1723His CaV3.1 mutation affects climbing fiber signaling to Purkinje cells. Altogether, our study shows not only that a point mutation in CACNA1G causes an ataxic phenotype and Purkinje cell degeneration in a mouse model, but also that the electrophysiological abnormalities at an early stage of SCA42 precede Purkinje cell loss.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Cerebelo/metabolismo , Fenotipo , Células de Purkinje/metabolismo , Ataxias Espinocerebelosas/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Canales de Calcio Tipo T/genética , Cerebelo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Células de Purkinje/patología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología
11.
J Neurol Neurosurg Psychiatry ; 90(5): 537-542, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30355605

RESUMEN

OBJECTIVES: To evaluate the burden of rare variants in the causative genes for amyotrophic lateral sclerosis (ALS) on the age at onset of ALS in a Japanese case series. METHODS: We conducted whole-exome sequencing analysis of 89 families with familial ALS (FALS) and 410 patients with sporadic ALS (SALS) to identify known pathogenic mutations or rare functionally predicted deleterious variants in the causative genes for ALS. Rare variants (minor allele frequency <1%) with scaled Combined Annotation-Dependent Depletion score >20 were defined as rare functionally predicted deleterious variants. The patients with ALS were classified on the basis of the number of pathogenic and/or rare functionally predicted deleterious variants, and the age at onset was compared among the classified groups. RESULTS: Whole-exome sequencing analysis revealed known pathogenic mutations or rare functionally predicted deleterious variants in causative genes for ALS in 56 families with FALS (62.9%) and 87 patients with SALS (21.2%). Such variants in multiple genes were identified in seven probands with FALS and eight patients with SALS. The ages at onset in the patients with ALS with multiple variants were significantly earlier than those in other patients with ALS. Even when the patients with known pathogenic mutations were excluded, a significantly earlier onset of the disease was still observed in patients with multiple rare functionally predicted deleterious variants. CONCLUSIONS: A substantial number of patients carried rare variants in multiple genes, and the burden of rare variants in the known causative genes for ALS affects the age at onset in the Japanese ALS series.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Mutación/genética , Adulto , Edad de Inicio , Estudios de Casos y Controles , Femenino , Humanos , Japón , Masculino , Persona de Mediana Edad , Secuenciación del Exoma
12.
Brain ; 141(6): 1622-1636, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29718187

RESUMEN

Several genes related to mitochondrial functions have been identified as causative genes of neuropathy or ataxia. Cytochrome c oxidase assembly factor 7 (COA7) may have a role in assembling mitochondrial respiratory chain complexes that function in oxidative phosphorylation. Here we identified four unrelated patients with recessive mutations in COA7 among a Japanese case series of 1396 patients with Charcot-Marie-Tooth disease (CMT) or other inherited peripheral neuropathies, including complex forms of CMT. We also found that all four patients had characteristic neurological features of peripheral neuropathy and ataxia with cerebellar atrophy, and some patients showed leukoencephalopathy or spinal cord atrophy on MRI scans. Validated mutations were located at highly conserved residues among different species and segregated with the disease in each family. Nerve conduction studies showed axonal sensorimotor neuropathy. Sural nerve biopsies showed chronic axonal degeneration with a marked loss of large and medium myelinated fibres. An immunohistochemical assay with an anti-COA7 antibody in the sural nerve from the control patient showed the positive expression of COA7 in the cytoplasm of Schwann cells. We also observed mildly elevated serum creatine kinase levels in all patients and the presence of a few ragged-red fibres and some cytochrome c oxidase-negative fibres in a muscle biopsy obtained from one patient, which was suggestive of subclinical mitochondrial myopathy. Mitochondrial respiratory chain enzyme assay in skin fibroblasts from the three patients showed a definitive decrease in complex I or complex IV. Immunocytochemical analysis of subcellular localization in HeLa cells indicated that mutant COA7 proteins as well as wild-type COA7 were localized in mitochondria, which suggests that mutant COA7 does not affect the mitochondrial recruitment and may affect the stability or localization of COA7 interaction partners in the mitochondria. In addition, Drosophila COA7 (dCOA7) knockdown models showed rough eye phenotype, reduced lifespan, impaired locomotive ability and shortened synaptic branches of motor neurons. Our results suggest that loss-of-function COA7 mutation is responsible for the phenotype of the presented patients, and this new entity of disease would be referred to as spinocerebellar ataxia with axonal neuropathy type 3.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Neuropatía Hereditaria Motora y Sensorial/complicaciones , Neuropatía Hereditaria Motora y Sensorial/genética , Mutación/genética , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/genética , Adolescente , Animales , Animales Modificados Genéticamente , Encéfalo/diagnóstico por imagen , Células Cultivadas , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Salud de la Familia , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Predisposición Genética a la Enfermedad/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Neuropatía Hereditaria Motora y Sensorial/diagnóstico por imagen , Humanos , Discos Imaginales/metabolismo , Discos Imaginales/ultraestructura , Locomoción/efectos de los fármacos , Locomoción/genética , Masculino , Persona de Mediana Edad , Neuronas Motoras/patología , Unión Neuromuscular/genética , Unión Neuromuscular/patología , Unión Neuromuscular/ultraestructura , Desempeño Psicomotor/fisiología , Interferencia de ARN/fisiología , Médula Espinal/diagnóstico por imagen , Ataxias Espinocerebelosas/diagnóstico por imagen , Adulto Joven
13.
Cerebellum ; 17(2): 237-242, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28895081

RESUMEN

Spinocerebellar ataxia 19/22 (SCA19/22) is a rare type of autosomal dominant SCA that was previously described in 11 families. We report the case of a 30-year-old Japanese man presenting with intellectual disability, early onset cerebellar ataxia, myoclonus, and dystonia without a family history. MRI showed cerebellar atrophy, and electroencephalograms showed paroxysmal sharp waves during hyperventilation and photic stimulation. Trio whole-exome sequencing analysis of DNA samples from the patient and his parents revealed a de novo novel missense mutation (c.1150G>A, p.G384S) in KCND3, the causative gene of SCA19/22, substituting for evolutionally conserved glycine. The mutation was predicted to be functionally deleterious by bioinformatic analysis. Although pure cerebellar ataxia is the most common clinical feature in SCA19/22 families, extracerebellar symptoms including intellectual disability and myoclonus are reported in a limited number of families, suggesting a genotype-phenotype correlation for particular mutations. Although autosomal recessive diseases are more common in patients with early onset sporadic cerebellar ataxia, the present study emphasizes that such a possibility of de novo mutation should be considered.


Asunto(s)
Ataxia Cerebelosa/genética , Distonía/genética , Discapacidad Intelectual/genética , Mutación/genética , Mioclonía/genética , Canales de Potasio Shal/genética , Adolescente , Ataxia Cerebelosa/complicaciones , Ataxia Cerebelosa/diagnóstico por imagen , Distonía/complicaciones , Distonía/diagnóstico por imagen , Electroencefalografía , Salud de la Familia , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Modelos Moleculares , Mioclonía/complicaciones , Mioclonía/diagnóstico por imagen , Degeneraciones Espinocerebelosas/genética , Secuenciación del Exoma
14.
Development ; 141(17): 3363-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25078651

RESUMEN

In vertebrates that have been examined to date, the sexual identity of germ cells is determined by the sex of gonadal somatic cells. In the teleost fish medaka, a sex-determination gene on the Y chromosome, DMY/dmrt1bY, is expressed in gonadal somatic cells and regulates the sexual identity of germ cells. Here, we report a novel mechanism by which sex chromosomes cell-autonomously confer sexually different characters upon germ cells prior to gonad formation in a genetically sex-determined species. We have identified a novel gene, Sdgc (sex chromosome-dependent differential expression in germ cells), whose transcripts are highly enriched in early XY germ cells. Chimeric analysis revealed that sexually different expression of Sdgc is controlled in a germ cell-autonomous manner by the number of Y chromosomes. Unexpectedly, DMY/dmrt1bY was expressed in germ cells prior to gonad formation, but knockdown and overexpression of DMY/dmrt1bY did not affect Sdgc expression. We also found that XX and XY germ cells isolated before the onset of DMY/dmrt1bY expression in gonadal somatic cells behaved differently in vitro and were affected by Sdgc. Sdgc maps close to the sex-determination locus, and recombination around the two loci appears to be repressed. Our results provide important insights into the acquisition and plasticity of sexual differences at the cellular level even prior to the developmental stage of sex determination.


Asunto(s)
Proteínas de Peces/genética , Células Germinativas/metabolismo , Gónadas/crecimiento & desarrollo , Organogénesis , Oryzias/crecimiento & desarrollo , Oryzias/genética , Cromosomas Sexuales/genética , Animales , Recuento de Células , Separación Celular , Células Cultivadas , Mapeo Cromosómico , Femenino , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ligamiento Genético , Sitios Genéticos/genética , Células Germinativas/citología , Gónadas/citología , Gónadas/metabolismo , Masculino , Mitosis/genética , Especificidad de Órganos/genética , Organogénesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética , Cromosoma Y/genética
15.
Bioinformatics ; 32(19): 2911-9, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27318202

RESUMEN

MOTIVATION: Determining the methylation state of regions with high copy numbers is challenging for second-generation sequencing, because the read length is insufficient to map reads uniquely, especially when repetitive regions are long and nearly identical to each other. Single-molecule real-time (SMRT) sequencing is a promising method for observing such regions, because it is not vulnerable to GC bias, it produces long read lengths, and its kinetic information is sensitive to DNA modifications. RESULTS: We propose a novel linear-time algorithm that combines the kinetic information for neighboring CpG sites and increases the confidence in identifying the methylation states of those sites. Using a practical read coverage of ∼30-fold from an inbred strain medaka (Oryzias latipes), we observed that both the sensitivity and precision of our method on individual CpG sites were ∼93.7%. We also observed a high correlation coefficient (R = 0.884) between our method and bisulfite sequencing, and for 92.0% of CpG sites, methylation levels ranging over [0,1] were in concordance within an acceptable difference 0.25. Using this method, we characterized the landscape of the methylation status of repetitive elements, such as LINEs, in the human genome, thereby revealing the strong correlation between CpG density and hypomethylation and detecting hypomethylation hot spots of LTRs and LINEs. We uncovered the methylation states for nearly identical active transposons, two novel LINE insertions of identity ∼99% and length 6050 base pairs (bp) in the human genome, and 16 Tol2 elements of identity >99.8% and length 4682 bp in the medaka genome. AVAILABILITY AND IMPLEMENTATION: AgIn (Aggregate on Intervals) is available at: https://github.com/hacone/AgIn CONTACT: ysuzuki@cb.k.u-tokyo.ac.jp or moris@cb.k.u-tokyo.ac.jp SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Islas de CpG , Metilación de ADN , Genoma Humano , Humanos , Análisis de Secuencia de ADN
16.
J Hum Genet ; 62(4): 473-480, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27928163

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder caused by survival motor neuron gene mutations. Variant forms of SMA accompanied by additional clinical presentations have been classified as atypical SMA and are thought to be caused by variants in as yet unidentified causative genes. Here, we presented the clinical findings of two siblings with an SMA variant followed by progressive cerebral atrophy, and the results of whole-exome sequencing analyses of the family quartet that was performed to identify potential causative variants. We identified two candidate homozygous missense variants, R942Q in the tubulin-folding cofactor D (TBCD) gene and H250Q in the bromo-adjacent homology domain and coiled-coil containing 1 (BAHCC1) gene, located on chromosome 17q25.3 with an interval of 1.4 Mbp. The in silico analysis of both variants suggested that TBCD rather than BAHCC1 was likely the pathogenic gene (TBCD sensitivity, 0.68; specificity, 0.97; BAHCC1 sensitivity, 1.00; specificity, 0.00). Thus, our results show that TBCD is a likely novel candidate gene for atypical SMA with progressive cerebral atrophy. TBCD is predicted to have important functions on tubulin integrity in motor neurons as well as in the central nervous system.


Asunto(s)
Encefalopatías/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas/genética , Atrofias Musculares Espinales de la Infancia/genética , Encefalopatías/fisiopatología , Niño , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Neuronas Motoras/patología , Mutación Missense , Linaje , Atrofias Musculares Espinales de la Infancia/fisiopatología
17.
Ann Neurol ; 79(4): 659-72, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26991897

RESUMEN

OBJECTIVE: The objective of this study was to identify new causes of Charcot-Marie-Tooth (CMT) disease in patients with autosomal-recessive (AR) CMT. METHODS: To efficiently identify novel causative genes for AR-CMT, we analyzed 303 unrelated Japanese patients with CMT using whole-exome sequencing and extracted recessive variants/genes shared among multiple patients. We performed mutation screening of the newly identified membrane metalloendopeptidase (MME) gene in 354 additional patients with CMT. We clinically, genetically, pathologically, and radiologically examined 10 patients with the MME mutation. RESULTS: We identified recessive mutations in MME in 10 patients. The MME gene encodes neprilysin (NEP), which is well known to be one of the most prominent beta-amyloid (Aß)-degrading enzymes. All patients had a similar phenotype consistent with late-onset axonal neuropathy. They showed muscle weakness, atrophy, and sensory disturbance in the lower extremities. All the MME mutations could be loss-of-function mutations, and we confirmed a lack/decrease of NEP protein expression in a peripheral nerve. No patients showed symptoms of dementia, and 1 patient showed no excess Aß in Pittsburgh compound-B positron emission tomography imaging. INTERPRETATION: Our results indicate that loss-of-function MME mutations are the most frequent cause of adult-onset AR-CMT2 in Japan, and we propose that this new disease should be termed AR-CMT2T. A loss-of-function MME mutation did not cause early-onset Alzheimer's disease. Identifying the MME mutation responsible for AR-CMT could improve the rate of molecular diagnosis and the understanding of the molecular mechanisms of CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Neprilisina/genética , Anciano , Exoma , Femenino , Genes Recesivos , Humanos , Japón , Masculino , Persona de Mediana Edad , Mutación , Fenotipo
18.
Am J Med Genet B Neuropsychiatr Genet ; 174(7): 712-723, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28608572

RESUMEN

Tourette Syndrome (TS) is a neurodevelopmental disorder characterized by chronic motor and vocal tics. Although there is a large genetic contribution, the genetic architecture of TS remains unclear. Exome sequencing has successfully revealed the contribution of de novo mutations in sporadic cases with neuropsychiatric disorders such as autism and schizophrenia. Here, using exome sequencing, we investigated de novo mutations in individuals with sporadic TS to identify novel risk loci and elucidate the genetic background of TS. Exome analysis was conducted for sporadic TS cases: nine trio families and one quartet family with concordant twins were investigated. Missense mutations were evaluated using functional prediction algorithms, and their population frequencies were calculated based on three public databases. Gene expression patterns in the brain were analyzed using the BrainSpan Developmental Transcriptome. Thirty de novo mutations, including four synonymous and four missense mutations, were identified. Among the missense mutations, one in the rapamycin-insensitive companion of mammalian target of rapamycin (RICTOR)-coding gene (rs140964083: G > A, found in one proband) was predicted to be hazardous. In the three public databases analyzed, variants in the same SNP locus were absent, and variants in the same gene were either absent or present at an extremely low frequency (3/5,008), indicating the rarity of hazardous RICTOR mutations in the general population. The de novo variant of RICTOR may be implicated in the development of sporadic TS, and RICTOR is a novel candidate factor for TS etiology.


Asunto(s)
Exoma , Mutación Missense , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Análisis de Secuencia de ADN/métodos , Síndrome de Tourette/genética , Adolescente , Adulto , Niño , Familia , Femenino , Estudios de Seguimiento , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Adulto Joven
19.
Am J Hum Genet ; 93(5): 900-5, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24119685

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurological disorder characterized by the degeneration of motor neurons and typically results in death within 3-5 years from onset. Familial ALS (FALS) comprises 5%-10% of ALS cases, and the identification of genes associated with FALS is indispensable to elucidating the molecular pathogenesis. We identified a Japanese family affected by late-onset, autosomal-dominant ALS in which mutations in genes known to be associated with FALS were excluded. A whole- genome sequencing and parametric linkage analysis under the assumption of an autosomal-dominant mode of inheritance with incomplete penetrance revealed the mutation c.2780G>A (p. Arg927Gln) in ERBB4. An extensive mutational analysis revealed the same mutation in a Canadian individual with familial ALS and a de novo mutation, c.3823C>T (p. Arg1275Trp), in a Japanese simplex case. These amino acid substitutions involve amino acids highly conserved among species, are predicted as probably damaging, and are located within a tyrosine kinase domain (p. Arg927Gln) or a C-terminal domain (p. Arg1275Trp), both of which mediate essential functions of ErbB4 as a receptor tyrosine kinase. Functional analysis revealed that these mutations led to a reduced autophosphorylation of ErbB4 upon neuregulin-1 (NRG-1) stimulation. Clinical presentations of the individuals with mutations were characterized by the involvement of both upper and lower motor neurons, a lack of obvious cognitive dysfunction, and relatively slow progression. This study indicates that disruption of the neuregulin-ErbB4 pathway is involved in the pathogenesis of ALS and potentially paves the way for the development of innovative therapeutic strategies such using NRGs or their agonists to upregulate ErbB4 functions.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Receptores ErbB/genética , Mutación , Neurregulinas/genética , Anciano , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Esclerosis Amiotrófica Lateral/patología , Pueblo Asiatico/genética , Canadá , Análisis Mutacional de ADN , Receptores ErbB/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Neurregulinas/metabolismo , Linaje , Fosforilación , Receptor ErbB-4 , Análisis de Secuencia de ADN , Transducción de Señal
20.
J Hum Genet ; 61(6): 547-53, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26911352

RESUMEN

Whole-genome and -exome resequencing using next-generation sequencers is a powerful approach for identifying genomic variations that are associated with diseases. However, systematic strategies for prioritizing causative variants from many candidates to explain the disease phenotype are still far from being established, because the population-specific frequency spectrum of genetic variation has not been characterized. Here, we have collected exomic genetic variation from 1208 Japanese individuals through a collaborative effort, and aggregated the data into a prevailing catalog. In total, we identified 156 622 previously unreported variants. The allele frequencies for the majority (88.8%) were lower than 0.5% in allele frequency and predicted to be functionally deleterious. In addition, we have constructed a Japanese-specific major allele reference genome by which the number of unique mapping of the short reads in our data has increased 0.045% on average. Our results illustrate the importance of constructing an ethnicity-specific reference genome for identifying rare variants. All the collected data were centralized to a newly developed database to serve as useful resources for exploring pathogenic variations. Public access to the database is available at http://www.genome.med.kyoto-u.ac.jp/SnpDB/.


Asunto(s)
Bases de Datos Genéticas , Variación Genética , Genética de Población , Alelos , Exoma , Frecuencia de los Genes , Genoma Humano , Genómica/métodos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Japón , Control de Calidad , Selección Genética , Navegador Web
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA