Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(8): e1011598, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37647312

RESUMEN

Merkel cell polyomavirus (MCPyV) is associated with approximately 80% of cases of Merkel cell carcinoma (MCC), an aggressive type of skin cancer. The incidence of MCC has tripled over the past twenty years, but there are currently very few effective targeted treatments. A better understanding of the MCPyV life cycle and its oncogenic mechanisms is needed to unveil novel strategies for the prevention and treatment of MCC. MCPyV infection and oncogenesis are reliant on the expression of the early viral oncoproteins, which drive the viral life cycle and MCPyV+ MCC tumor cell growth. To date, the molecular mechanisms regulating the transcription of the MCPyV oncogenes remain largely uncharacterized. In this study, we investigated how MCPyV early transcription is regulated to support viral infection and MCC tumorigenesis. Our studies established the roles of multiple cellular factors in the control of MCPyV gene expression. Inhibitor screening experiments revealed that the histone acetyltransferases p300 and CBP positively regulate MCPyV transcription. Their regulation of viral gene expression occurs through coactivation of the transcription factor NF-κB, which binds to the viral genome to drive MCPyV oncogene expression in a manner that is tightly controlled through a negative feedback loop. Furthermore, we discovered that small molecule inhibitors specifically targeting p300/CBP histone acetyltransferase activity are effective at blocking MCPyV tumor antigen expression and MCPyV+ MCC cell proliferation. Together, our work establishes key cellular factors regulating MCPyV transcription, providing the basis for understanding the largely unknown mechanisms governing MCPyV transcription that defines its infectious host cell tropism, viral life cycle, and oncogenic potential. Our studies also identify a novel therapeutic strategy against MCPyV+ MCC through specific blockage of MCPyV oncogene expression and MCC tumor growth.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Neoplasias Cutáneas , Humanos , Poliomavirus de Células de Merkel/genética , Carcinogénesis/genética , Oncogenes , Carcinoma de Células de Merkel/genética , Neoplasias Cutáneas/genética
2.
J Virol ; 97(4): e0190722, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36946735

RESUMEN

Merkel cell polyomavirus (MCPyV) has been associated with approximately 80% of Merkel cell carcinoma (MCC), an aggressive and increasingly incident skin cancer. The link between host innate immunity, viral load control, and carcinogenesis has been established but poorly characterized. We previously established the importance of the STING and NF-κB pathways in the host innate immune response to viral infection. In this study, we further discovered that MCPyV infection of human dermal fibroblasts (HDFs) induces the expression of type I and III interferons (IFNs), which in turn stimulate robust expression of IFN-stimulated genes (ISGs). Blocking type I IFN downstream signaling using an IFN-ß antibody, JAK inhibitors, and CRISPR knockout of the receptor dramatically repressed MCPyV infection-induced ISG expression but did not significantly restore viral replication activities. These findings suggest that IFN-mediated induction of ISGs in response to MCPyV infection is not crucial to viral control. Instead, we found that type I IFN exerts a more direct effect on MCPyV infection postentry by repressing early viral transcription. We further demonstrated that growth factors normally upregulated in wounded or UV-irradiated human skin can significantly stimulate MCPyV gene expression and replication. Together, these data suggest that in healthy individuals, host antiviral responses, such as IFN production induced by viral activity, may restrict viral propagation to reduce MCPyV burden. Meanwhile, growth factors induced by skin abrasion or UV irradiation may stimulate infected dermal fibroblasts to promote MCPyV propagation. A delicate balance of these mutually antagonizing factors provides a mechanism to support persistent MCPyV infection. IMPORTANCE Merkel cell carcinoma is an aggressive skin cancer that is particularly lethal to immunocompromised individuals. Though rare, MCC incidence has increased significantly in recent years. There are no lasting and effective treatments for metastatic disease, highlighting the need for additional treatment and prevention strategies. By investigating how the host innate immune system interfaces with Merkel cell polyomavirus, the etiological agent of most of these cancers, our studies identified key factors necessary for viral control, as well as conditions that support viral propagation. These studies provide new insights for understanding how the virus balances the effects of the host immune defenses and of growth factor stimulation to achieve persistent infection. Since virus-positive MCC requires the expression of viral oncogenes to survive, our observation that type I IFN can repress viral oncogene transcription indicates that these cytokines could be explored as a viable therapeutic option for treating patients with virus-positive MCC.


Asunto(s)
Carcinoma de Células de Merkel , Interferones , Infecciones por Polyomavirus , Transducción de Señal , Infecciones Tumorales por Virus , Poliomavirus de Células de Merkel/inmunología , Interferones/fisiología , Transducción de Señal/inmunología , Infecciones por Polyomavirus/inmunología , Infecciones Tumorales por Virus/inmunología , Carcinoma de Células de Merkel/inmunología , Inmunidad Innata/inmunología , Interacciones Microbiota-Huesped/inmunología , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Expresión Génica/inmunología , Replicación Viral/genética
3.
Proc Natl Acad Sci U S A ; 117(24): 13730-13739, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32482869

RESUMEN

Merkel cell carcinoma (MCC) is a lethal skin cancer that metastasizes rapidly. Few effective treatments are available for patients with metastatic MCC. Poor intratumoral T cell infiltration and activation are major barriers that prevent MCC eradication by the immune system. However, the mechanisms that drive the immunologically restrictive tumor microenvironment remain poorly understood. In this study, we discovered that the innate immune regulator stimulator of IFN genes (STING) is completely silenced in MCCs. To reactivate STING in MCC, we developed an application of a human STING mutant, STINGS162A/G230I/Q266I, which we found to be readily stimulated by a mouse STING agonist, DMXAA. This STING molecule was efficiently delivered to MCC cells via an AAV vector. Introducing STINGS162A/G230I/Q266I expression and stimulating its activity by DMXAA in MCC cells reactivates their antitumor inflammatory cytokine/chemokine production. In response to MCC cells with restored STING, cocultured T cells expressing MCPyV-specific T cell receptors (TCRs) show increased cytokine production, migration toward tumor cells, and tumor cell killing. Our study therefore suggests that STING deficiency contributes to the immune suppressive nature of MCCs. More importantly, DMXAA stimulation of STINGS162A/G230I/Q266I causes robust cell death in MCCs as well as several other STING-silenced cancers. Because tumor antigens and DNA released by dying cancer cells have the potential to amplify innate immune response and activate antitumor adaptive responses, our finding indicates that targeted delivery and activation of STINGS162A/G230I/Q266I in tumor cells holds great therapeutic promise for the treatment of MCC and many other STING-deficient cancers.


Asunto(s)
Carcinoma de Células de Merkel/inmunología , Proteínas de la Membrana/inmunología , Neoplasias Cutáneas/inmunología , Carcinoma de Células de Merkel/genética , Línea Celular Tumoral , Humanos , Inmunidad Innata , Proteínas de la Membrana/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/efectos de los fármacos , Neoplasias Cutáneas/genética , Xantonas/farmacología
4.
J Virol ; 95(13): e0221120, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33883226

RESUMEN

Merkel cell polyomavirus (MCPyV) infects most of the human population asymptomatically, but in rare cases it leads to a highly aggressive skin cancer called Merkel cell carcinoma (MCC). MCC incidence is much higher in aging and immunocompromised populations. The epidemiology of MCC suggests that dysbiosis between the host immune response and the MCPyV infectious cycle could contribute to the development of MCPyV-associated MCC. Insufficient restriction of MCPyV by normal cellular processes, for example, could promote the incidental oncogenic MCPyV integration events and/or entry into the original cell of MCC. Progress toward understanding MCPyV biology has been hindered by its narrow cellular tropism. Our discovery that primary human dermal fibroblasts (HDFs) support MCPyV infection has made it possible to closely model cellular responses to different stages of the infectious cycle. The present study reveals that the onset of MCPyV replication and early gene expression induces an inflammatory cytokine and interferon-stimulated gene (ISG) response. The cGAS-STING pathway, in coordination with NF-κB, mediates induction of this innate immune gene expression program. Further, silencing of cGAS or NF-κB pathway factors led to elevated MCPyV replication. We also discovered that the PYHIN protein IFI16 localizes to MCPyV replication centers but does not contribute to the induction of ISGs. Instead, IFI16 upregulates inflammatory cytokines in response to MCPyV infection by an alternative mechanism. The work described herein establishes a foundation for exploring how changes to the skin microenvironment induced by aging or immunodeficiency might alter the fate of MCPyV and its host cell to encourage carcinogenesis. IMPORTANCE MCC has a high rate of mortality and an increasing incidence. Immune-checkpoint therapies have improved the prognosis of patients with metastatic MCC. Still, a significant proportion of the patients fail to respond to immune-checkpoint therapies or have a medical need for iatrogenic immune-suppression. A greater understanding of MCPyV biology could inform targeted therapies for MCPyV-associated MCC. Moreover, cellular events preceding MCC oncogenesis remain largely unknown. The present study aims to explore how MCPyV interfaces with innate immunity during its infectious cycle. We describe how MCPyV replication and/or transcription elicit an innate immune response via cGAS-STING, NF-κB, and IFI16. We also explore the effects of this response on MCPyV replication. Our findings illustrate how healthy cellular conditions may allow low-level infection that evades immune destruction until highly active replication is restricted by host responses. Conversely, pathological conditions could result in unbridled MCPyV replication that licenses MCC tumorigenesis.


Asunto(s)
Citocinas/inmunología , Fibroblastos/inmunología , Inmunidad Innata/inmunología , Poliomavirus de Células de Merkel/inmunología , Piel/inmunología , Sistemas CRISPR-Cas/genética , Carcinoma de Células de Merkel/patología , Células Cultivadas , Citocinas/biosíntesis , Fibroblastos/virología , Células HEK293 , Humanos , Inmunidad Innata/genética , Interferones/biosíntesis , Interferones/inmunología , Proteínas de la Membrana/genética , Poliomavirus de Células de Merkel/crecimiento & desarrollo , FN-kappa B/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Infecciones por Polyomavirus/inmunología , Piel/citología , Infecciones Tumorales por Virus/inmunología
5.
J Virol ; 95(12)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33789998

RESUMEN

The COVID-19 pandemic poses a serious global health threat. The rapid global spread of SARS-CoV-2 highlights an urgent need to develop effective therapeutics for blocking SARS-CoV-2 infection and spread. Stimulator of Interferon Genes (STING) is a chief element in host antiviral defense pathways. In this study, we examined the impact of the STING signaling pathway on coronavirus infection using the human coronavirus OC43 (HCoV-OC43) model. We found that HCoV-OC43 infection did not stimulate the STING signaling pathway, but the activation of STING signaling effectively inhibits HCoV-OC43 infection to a much greater extent than that of type I interferons (IFNs). We also discovered that IRF3, the key STING downstream innate immune effector, is essential for this anticoronavirus activity. In addition, we found that the amidobenzimidazole (ABZI)-based human STING agonist diABZI robustly blocks the infection of not only HCoV-OC43 but also SARS-CoV-2. Therefore, our study identifies the STING signaling pathway as a potential therapeutic target that could be exploited for developing broad-spectrum antiviral therapeutics against multiple coronavirus strains in order to face the challenge of future coronavirus outbreaks.IMPORTANCE The highly infectious and lethal SARS-CoV-2 is posing an unprecedented threat to public health. Other coronaviruses are likely to jump from a nonhuman animal to humans in the future. Novel broad-spectrum antiviral therapeutics are therefore needed to control known pathogenic coronaviruses such as SARS-CoV-2 and its newly mutated variants, as well as future coronavirus outbreaks. STING signaling is a well-established host defense pathway, but its role in coronavirus infection remains unclear. In the present study, we found that activation of the STING signaling pathway robustly inhibits infection of HCoV-OC43 and SARS-CoV-2. These results identified the STING pathway as a novel target for controlling the spread of known pathogenic coronaviruses, as well as emerging coronavirus outbreaks.


Asunto(s)
COVID-19/metabolismo , Coronavirus Humano OC43/metabolismo , Proteínas de la Membrana/metabolismo , SARS-CoV-2/metabolismo , Transducción de Señal , Células A549 , Animales , COVID-19/genética , Chlorocebus aethiops , Coronavirus Humano OC43/genética , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , SARS-CoV-2/genética , Células Vero
6.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498833

RESUMEN

Treating immunosuppressive tumors represents a major challenge in cancer therapies. Activation of STING signaling has shown remarkable potential to invigorate the immunologically "cold" tumor microenvironment (TME). However, we have shown that STING is silenced in many human cancers, including pancreatic ductal adenocarcinoma (PDAC) and Merkel cell carcinoma (MCC). In this study, we demonstrated that mRNA-lipid nanoparticle (LNP) technology could be used to efficiently deliver naturally occurring constitutively active STING mutant STINGR284S into these cancer cells to reactivate STING antitumor immunity and trigger robust killing of tumor cells. STING agonists are being actively pursued as cancer immunotherapies. However, traditional STING agonists can induce T cell cytotoxicity, counteracting the desired antitumor immune response. In addition, the antitumor efficacy of traditional STING agonists obligatorily depends on STING expression and does not work in STING-silenced cancers. Importantly, we found that STINGR284S mRNA-LNP does not introduce T cell cytotoxicity. Our studies demonstrated that mRNA-LNP delivery of STINGR284S can reactivate the antitumor response without introducing antiproliferative effects in lymphocytic immune cells, overcoming the toxicity and limitations of conventional STING agonists. Our work therefore identifies a novel therapeutic tool for reactivating antitumor immunity in an array of STING-silenced immunologically "cold" tumors that are refractory to current therapies.


Asunto(s)
Carcinoma de Células de Merkel , Nanopartículas , Neoplasias Cutáneas , Humanos , ARN Mensajero/genética , Proteínas de la Membrana/metabolismo , Microambiente Tumoral , Inmunoterapia
7.
PLoS Pathog ; 15(9): e1008025, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31479497

RESUMEN

Kaposi's sarcoma associated herpesvirus (KSHV), like all herpesviruses maintains lifelong persistence with its host genome in latently infected cells with only a small fraction of cells showing signatures of productive lytic replication. Modulation of cellular signaling pathways by KSHV-encoded latent antigens, and microRNAs, as well as some level of spontaneous reactivation are important requirements for establishment of viral-associated diseases. Hypoxia, a prominent characteristic of the microenvironment of cancers, can exert specific effects on cell cycle control, and DNA replication through HIF1α-dependent pathways. Furthermore, hypoxia can induce lytic replication of KSHV. The mechanism by which KSHV-encoded RNAs and antigens regulate cellular and viral replication in the hypoxic microenvironment has yet to be fully elucidated. We investigated replication-associated events in the isogenic background of KSHV positive and negative cells grown under normoxic or hypoxic conditions and discovered an indispensable role of KSHV for sustained cellular and viral replication, through protection of critical components of the replication machinery from degradation at different stages of the process. These include proteins involved in origin recognition, pre-initiation, initiation and elongation of replicating genomes. Our results demonstrate that KSHV-encoded LANA inhibits hypoxia-mediated degradation of these proteins to sustain continued replication of both host and KSHV DNA. The present study provides a new dimension to our understanding of the role of KSHV in survival and growth of viral infected cells growing under hypoxic conditions and suggests potential new strategies for targeted treatment of KSHV-associated cancer.


Asunto(s)
Antígenos Virales/metabolismo , Respiración de la Célula/fisiología , Herpesvirus Humano 8/metabolismo , Proteínas Nucleares/metabolismo , Antígenos Virales/genética , Antígenos Virales/inmunología , Línea Celular Tumoral , Herpesvirus Humano 8/patogenicidad , Humanos , Hipoxia/metabolismo , Proteínas Nucleares/inmunología , Sarcoma de Kaposi/virología , Microambiente Tumoral , Latencia del Virus/genética , Replicación Viral/genética
8.
Recent Results Cancer Res ; 217: 303-323, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33200370

RESUMEN

Merkel cell polyomavirus (MCPyV) is the most recently discovered human oncogenic virus. MCPyV asymptomatically infects most of the human population. In the elderly and immunocompromised, however, it can cause a highly lethal form of human skin cancer called Merkel cell carcinoma (MCC). Distinct from the productive MCPyV infection that replicates the viral genome as episomes, MCC tumors contain replication-incompetent, integrated viral genomes. Mutant MCPyV tumor antigen genes expressed from the integrated viral genomes are essential for driving the oncogenic development of MCPyV-associated MCC. In this chapter, we summarize recent discoveries on MCPyV virology, mechanisms of MCPyV-mediated oncogenesis, and the current therapeutic strategies for MCPyV-associated MCCs.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Neoplasias Cutáneas , Infecciones Tumorales por Virus , Anciano , Carcinoma de Células de Merkel/virología , Humanos , Poliomavirus de Células de Merkel/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/virología
9.
Proc Natl Acad Sci U S A ; 114(27): E5352-E5361, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28630312

RESUMEN

The epigenetic reader BRD4 plays a vital role in transcriptional regulation, cellular growth control, and cell-cycle progression. Dysregulation of BRD4 function has been implicated in the pathogenesis of a wide range of cancers. However, how BRD4 is regulated to maintain its normal function in healthy cells and how alteration of this process leads to cancer remain poorly understood. In this study, we discovered that BRD4 is hyperphosphorylated in NUT midline carcinoma and identified CDK9 as a potential kinase mediating BRD4 hyperphosphorylation. Disruption of BRD4 hyperphosphorylation using both chemical and molecular inhibitors led to the repression of BRD4 downstream oncogenes and abrogation of cellular transformation. BRD4 hyperphosphorylation is also observed in other cancers displaying enhanced BRD4 oncogenic activity. Our study revealed a mechanism that may regulate BRD4 biological function through phosphorylation, which, when dysregulated, could lead to oncogenesis. Our finding points to strategies to target the aberrant BRD4 signaling specifically for cancer intervention.


Asunto(s)
Carcinoma/genética , Carcinoma/metabolismo , Quinasa 9 Dependiente de la Ciclina/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Factores de Transcripción/química , Células A549 , Carcinogénesis , Carcinoma/tratamiento farmacológico , Proteínas de Ciclo Celular , Transformación Celular Neoplásica , Ensayos de Selección de Medicamentos Antitumorales , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Proteínas de Neoplasias , Proteínas de Fusión Oncogénica/genética , Oncogenes , Fosforilación , Transducción de Señal
10.
J Virol ; 92(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29167345

RESUMEN

Merkel cell polyomavirus (MCPyV) is the first polyomavirus to be associated with human cancer. Mechanistic studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. In this study, we examined the ability of MCPyV-GFP pseudovirus (containing a green fluorescent protein [GFP] reporter construct), MCPyV recombinant virions, and several MCPyV chimeric viruses to infect dermal fibroblasts isolated from various model animals, including mouse (Mus musculus), rabbit (Oryctolagus cuniculus), rat (Rattus norvegicus), chimpanzee (Pan troglodytes), rhesus macaque (Macaca mulatta), patas monkey (Erythrocebus patas), common woolly monkey (Lagothrix lagotricha), red-chested mustached tamarin (Saguinus labiatus), and tree shrew (Tupaia belangeri). We found that MCPyV-GFP pseudovirus was able to enter the dermal fibroblasts of all species tested. Chimpanzee dermal fibroblasts were the only type that supported vigorous MCPyV gene expression and viral replication, and they did so to a level beyond that of human dermal fibroblasts. We further demonstrated that both human and chimpanzee dermal fibroblasts produce infectious MCPyV virions that can successfully infect new cells. In addition, rat dermal fibroblasts supported robust MCPyV large T antigen expression after infection with an MCPyV chimeric virus in which the entire enhancer region of the MCPyV early promoter has been replaced with the simian virus 40 (SV40) analog. Our results suggest that viral transcription and/or replication events represent the major hurdle for MCPyV cross-species transmission. The capacity of rat dermal fibroblasts to support MCPyV early gene expression suggests that the rat is a candidate model organism for studying viral oncogene function during Merkel cell carcinoma (MCC) oncogenic progression.IMPORTANCE MCPyV plays an important role in the development of a highly aggressive form of skin cancer, Merkel cell carcinoma (MCC). With the increasing number of MCC diagnoses, there is a need to better understand the virus and its oncogenic potential. However, studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. To pinpoint the best candidate for developing an MCPyV infection animal model, we examined MCPyV's ability to infect dermal fibroblasts isolated from various established model animals. Of the animal cell types we tested, chimpanzee dermal fibroblasts were the only isolates that supported the full MCPyV infectious cycle. To overcome the infection blockade in the other model animals, we constructed chimeric viruses that achieved robust MCPyV entry and oncogene expression in rat fibroblasts. Our results suggest that the rat may serve as an in vivo model to study MCV oncogenesis.


Asunto(s)
Antígenos Virales de Tumores/metabolismo , Fibroblastos/metabolismo , Poliomavirus de Células de Merkel/patogenicidad , Replicación Viral , Animales , Carcinoma de Células de Merkel/virología , Replicación del ADN , Modelos Animales de Enfermedad , Femenino , Fibroblastos/virología , Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Pan troglodytes , Infecciones por Polyomavirus/virología , Primates , Conejos , Ratas , Neoplasias Cutáneas/virología , Infecciones Tumorales por Virus/virología
11.
J Virol ; 90(3): 1544-56, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26608318

RESUMEN

UNLABELLED: Merkel cell polyomavirus (MCPyV) plays an important role in Merkel cell carcinoma (MCC). MCPyV small T (sT) antigen has emerged as the key oncogenic driver in MCC carcinogenesis. It has also been shown to promote MCPyV LT-mediated replication by stabilizing LT. The importance of MCPyV sT led us to investigate sT functions and to identify potential ways to target this protein. We discovered that MCPyV sT purified from bacteria contains iron-sulfur (Fe/S) clusters. Electron paramagnetic resonance analysis showed that MCPyV sT coordinates a [2Fe-2S] and a [4Fe-4S] cluster. We also observed phenotypic conservation of Fe/S coordination in the sTs of other polyomaviruses. Since Fe/S clusters are critical cofactors in many nucleic acid processing enzymes involved in DNA unwinding and polymerization, our results suggested the hypothesis that MCPyV sT might be directly involved in viral replication. Indeed, we demonstrated that MCPyV sT enhances LT-mediated replication in a manner that is independent of its previously reported ability to stabilize LT. MCPyV sT translocates to nuclear foci containing actively replicating viral DNA, supporting a direct role for sT in promoting viral replication. Mutations of Fe/S cluster-coordinating cysteines in MCPyV sT abolish its ability to stimulate viral replication. Moreover, treatment with cidofovir, a potent antiviral agent, robustly inhibits the sT-mediated enhancement of MCPyV replication but has little effect on the basal viral replication driven by LT alone. This finding further indicates that MCPyV sT plays a direct role in stimulating viral DNA replication and introduces cidofovir as a possible drug for controlling MCPyV infection. IMPORTANCE: MCPyV is associated with a highly aggressive form of skin cancer in humans. Epidemiological surveys for MCPyV seropositivity and sequencing analyses of healthy human skin suggest that MCPyV may represent a common component of the human skin microbial flora. However, much of the biology of the virus and its oncogenic ability remain to be investigated. In this report, we identify MCPyV sT as a novel Fe/S cluster protein and show that conserved cysteine clusters are important for sT's ability to enhance viral replication. Moreover, we show that sT sensitizes MCPyV replication to cidofovir inhibition. The discovery of Fe/S clusters in MCPyV sT opens new avenues to the study of the structure and functionality of this protein. Moreover, this study supports the notion that sT is a potential drug target for dampening MCPyV infection.


Asunto(s)
Antígenos Virales de Tumores/metabolismo , Replicación del ADN , Proteínas Hierro-Azufre/metabolismo , Poliomavirus de Células de Merkel/fisiología , Replicación Viral , Antígenos Virales de Tumores/química , Antígenos Virales de Tumores/aislamiento & purificación , Antivirales/metabolismo , Línea Celular , Núcleo Celular/química , Cidofovir , Citosina/análogos & derivados , Citosina/metabolismo , Análisis Mutacional de ADN , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Poliomavirus de Células de Merkel/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Organofosfonatos/metabolismo , Transporte de Proteínas
12.
Adv Exp Med Biol ; 1018: 35-56, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29052131

RESUMEN

Merkel cell polyomavirus (MCPyV or MCV) is a novel human polyomavirus that has been discovered in Merkel cell carcinoma (MCC), a highly aggressive skin cancer. MCPyV infection is widespread in the general population. MCPyV-associated MCC is one of the most aggressive skin cancers, killing more patients than other well-known cancers such as cutaneous T-cell lymphoma and chronic myelogenous leukemia (CML). Currently, however, there is no effective drug for curing this cancer. The incidence of MCC has tripled over the past two decades. With the widespread infection of MCPyV and the increase in MCC diagnoses, it is critical to better understand the biology of MCPyV and its oncogenic potential. In this chapter, we summarize recent discoveries regarding MCPyV molecular virology, host cellular tropism, mechanisms of MCPyV oncoprotein-mediated oncogenesis, and current therapeutic strategies for MCPyV-associated MCC. We also present epidemiological evidence for MCPyV infection in HIV patients and links between MCPyV and non-MCC human cancers.


Asunto(s)
Carcinogénesis/genética , Poliomavirus de Células de Merkel/genética , Neoplasias/virología , Neoplasias Cutáneas/virología , Humanos , Poliomavirus de Células de Merkel/patogenicidad , Neoplasias/genética , Neoplasias/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
13.
J Biol Chem ; 290(5): 2744-58, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512383

RESUMEN

NUT midline carcinoma (NMC) is a rare but highly aggressive cancer typically caused by the translocation t(15;19), which results in the formation of the BRD4-NUT fusion oncoprotein. Previous studies have demonstrated that fusion of the NUT protein with the double bromodomains of BRD4 may significantly alter the cellular gene expression profile to contribute to NMC tumorigenesis. However, the mechanistic details of this BRD4-NUT function remain poorly understood. In this study, we examined the NUT function in transcriptional regulation by targeting it to a LacO transgene array integrated in U2OS 2-6-3 cells, which allow us to visualize how NUT alters the in situ gene transcription dynamic. Using this system, we demonstrated that the NUT protein tethered to the LacO locus recruits p300/CREB-binding protein (CBP), induces histone hyperacetylation, and enriches BRD4 to the transgene array chromatin foci. We also discovered that, in BRD4-NUT expressed in NMC cells, the NUT moiety of the fusion protein anchored to chromatin by the double bromodomains also stimulates histone hyperacetylation, which causes BRD4 to bind tighter to chromatin. Consequently, multiple BRD4-interacting factors are recruited to the NUT-associated chromatin locus to activate in situ transgene expression. This gene transcription function was repressed by either expression of a dominant negative inhibitor of the p300-NUT interaction or treatment with (+)-JQ1, which dissociates BRD4 from the LacO chromatin locus. Our data support a model in which BRD4-NUT-stimulated histone hyperacetylation recruits additional BRD4 and interacting partners to support transcriptional activation, which underlies the BRD4-NUT oncogenic mechanism in NMC.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Activación Transcripcional/genética , Activación Transcripcional/fisiología
14.
J Biol Chem ; 290(3): 1874-84, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25480786

RESUMEN

Merkel cell carcinoma is a highly aggressive form of skin cancer. Merkel cell polyomavirus (MCV) infection and DNA integration into the host genome correlate with 80% of all Merkel cell carcinoma cases. Integration of the MCV genome frequently results in mutations in the large tumor antigen (LT), leading to expression of a truncated LT that retains pRB binding but with a deletion of the C-terminal domain. Studies from our laboratory and others have shown that the MCV LT C-terminal helicase domain contains growth-inhibiting properties. Additionally, we have shown that host DNA damage response factors are recruited to viral replication centers. In this study, we identified a novel MCV LT phosphorylation site at Ser-816 in the C-terminal domain. We demonstrate that activation of the ATM pathway stimulated MCV LT phosphorylation at Ser-816, whereas inhibition of ATM kinase activity prevented LT phosphorylation at this site. In vitro phosphorylation experiments confirmed that ATM kinase is responsible for phosphorylating MCV LT at Ser-816. Finally, we show that ATM kinase-mediated MCV LT Ser-816 phosphorylation may contribute to the anti-tumorigenic properties of the MCV LT C-terminal domain.


Asunto(s)
Antígenos Transformadores de Poliomavirus/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Poliomavirus de Células de Merkel/metabolismo , Anexina A5/química , Apoptosis , Línea Celular Tumoral , Glutatión Transferasa/metabolismo , Células HEK293 , Células HeLa , Humanos , Fosforilación , Plásmidos/metabolismo , Estructura Terciaria de Proteína
15.
J Virol ; 88(6): 3285-97, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24390338

RESUMEN

UNLABELLED: Accumulating evidence indicates a role for Merkel cell polyomavirus (MCPyV) in the development of Merkel cell carcinoma (MCC), making MCPyV the first polyomavirus to be clearly associated with human cancer. With the high prevalence of MCPyV infection and the increasing amount of MCC diagnosis, there is a need to better understand the virus and its oncogenic potential. In this study, we examined the relationship between the host DNA damage response (DDR) and MCPyV replication. We found that components of the ATM- and ATR-mediated DDR pathways accumulate in MCPyV large T antigen (LT)-positive nuclear foci in cells infected with native MCPyV virions. To further study MCPyV replication, we employed our previously established system, in which recombinant MCPyV episomal DNA is autonomously replicated in cultured cells. Similar to native MCPyV infection, where both MCPyV origin and LT are present, the host DDR machinery colocalized with LT in distinct nuclear foci. Immunofluorescence in situ hybridization and bromodeoxyuridine (BrdU) incorporation analysis showed that these DDR proteins and MCPyV LT in fact colocalized at the actively replicating MCPyV replication complexes, which were absent when a replication-defective LT mutant or an MCPyV-origin mutant was introduced in place of wild-type LT or wild-type viral origin. Inhibition of DDR kinases using chemical inhibitors and ATR/ATM small interfering RNA (siRNA) knockdown reduced MCPyV DNA replication without significantly affecting LT expression or the host cell cycle. This study demonstrates that these host DDR factors are important for MCPyV DNA replication, providing new insight into the host machinery involved in the MCPyV life cycle. IMPORTANCE: MCPyV is the first polyomavirus to be clearly associated with human cancer. However, the MCPyV life cycle and its oncogenic mechanism remain poorly understood. In this report, we show that, in cells infected with native MCPyV virions, components of the ATM- and ATR-mediated DDR pathways accumulate in MCPyV LT-positive nuclear foci. Such a phenotype was recapitulated using our previously established system for visualizing MCPyV replication complexes in cells. By combining immunofluorescent staining, fluorescence in situ hybridization, and BrdU incorporation analysis, we demonstrate that DDR proteins are important for maintaining robust MCPyV DNA replication. This study not only provides the first look into the microscopic details of DDR factor/LT replication complexes at the MCPyV origin but also provides a platform for further studying the mechanistic role of host DDR factors in the MCPyV life cycle and virus-associated oncogenesis.


Asunto(s)
Carcinoma de Células de Merkel/metabolismo , Replicación del ADN , Poliomavirus de Células de Merkel/genética , Infecciones por Polyomavirus/metabolismo , Infecciones Tumorales por Virus/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/virología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/virología , Daño del ADN , Humanos , Poliomavirus de Células de Merkel/fisiología , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/virología , Transporte de Proteínas , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/virología
17.
J Virol ; 87(7): 3871-84, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365439

RESUMEN

Replication of the human papillomavirus (HPV) DNA genome relies on viral factors E1 and E2 and the cellular replication machinery. Bromodomain-containing protein 4 (Brd4) interacts with viral E2 protein to mediate papillomavirus (PV) genome maintenance and viral transcription. However, the functional role of Brd4 in the HPV life cycle remains to be clearly defined. In this study, we provide the first look into the E2-Brd4 interaction in the presence of other important viral factors, such as the HPV16 E1 protein and the viral genome. We show that Brd4 is recruited to actively replicating HPV16 origin foci together with HPV16 E1, E2, and a number of the cellular replication factors: replication protein A70 (RPA70), replication factor C1 (RFC1), and DNA polymerase δ. Mutagenesis disrupting the E2-Brd4 interaction abolishes the formation of the HPV16 replication complex and impairs HPV16 DNA replication in cells. Brd4 was further demonstrated to be necessary for HPV16 viral DNA replication using a cell-free replication system in which depletion of Brd4 by small interfering RNA (siRNA) silencing leads to impaired HPV16 viral DNA replication and recombinant Brd4 protein is able to rescue viral DNA replication. In addition, releasing endogenous Brd4 from cellular chromatin by using the bromodomain inhibitor JQ1(+) enhances HPV16 DNA replication, demonstrating that the role of Brd4 in HPV DNA replication could be uncoupled from its function in chromatin-associated transcriptional regulation and cell cycle control. Our study reveals a new role for Brd4 in HPV genome replication, providing novel insights into understanding the life cycle of this oncogenic DNA virus.


Asunto(s)
ADN Viral/fisiología , Proteínas de Unión al ADN/metabolismo , Papillomavirus Humano 16/fisiología , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Factores de Transcripción/metabolismo , Replicación Viral/fisiología , Southern Blotting , Bromodesoxiuridina , Proteínas de Ciclo Celular , Línea Celular Tumoral , ADN Polimerasa III/metabolismo , Cartilla de ADN/genética , Proteínas de Unión al ADN/genética , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Silenciador del Gen , Humanos , Immunoblotting , Hibridación Fluorescente in Situ , Mutagénesis , Proteínas Nucleares/genética , Proteínas Oncogénicas Virales/genética , Plásmidos/genética , ARN Interferente Pequeño/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación C/metabolismo , Factores de Transcripción/genética
18.
J Virol ; 87(16): 9173-88, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23760247

RESUMEN

Clonal integration of Merkel cell polyomavirus (MCV) DNA into the host genome has been observed in at least 80% of Merkel cell carcinoma (MCC). The integrated viral genome typically carries mutations that truncate the C-terminal DNA binding and helicase domains of the MCV large T antigen (LT), suggesting a selective pressure to remove this MCV LT region during tumor development. In this study, we show that MCV infection leads to the activation of host DNA damage responses (DDR). This activity was mapped to the C-terminal helicase-containing region of the MCV LT. The MCV LT-activated DNA damage kinases, in turn, led to enhanced p53 phosphorylation, upregulation of p53 downstream target genes, and cell cycle arrest. Compared to the N-terminal MCV LT fragment that is usually preserved in mutants isolated from MCC tumors, full-length MCV LT shows a decreased potential to support cellular proliferation, focus formation, and anchorage-independent cell growth. These apparently antitumorigenic effects can be reversed by a dominant-negative p53 inhibitor. Our results demonstrate that MCV LT-induced DDR activates p53 pathway, leading to the inhibition of cellular proliferation. This study reveals a key difference between MCV LT and simian vacuolating virus 40 LT, which activates a DDR but inhibits p53 function. This study also explains, in part, why truncation mutations that remove the MCV LT C-terminal region are necessary for the oncogenic progression of MCV-associated cancers.


Asunto(s)
Antígenos Virales de Tumores/metabolismo , Puntos de Control del Ciclo Celular , Enzimas Reparadoras del ADN/biosíntesis , Interacciones Huésped-Patógeno , Poliomavirus de Células de Merkel/patogenicidad , Factores de Virulencia/metabolismo , Integración Viral , Línea Celular , Daño del ADN , Reparación del ADN , Humanos , Proteína p53 Supresora de Tumor/metabolismo
19.
PLoS Pathog ; 8(11): e1003021, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144621

RESUMEN

Merkel cell polyomavirus (MCV or MCPyV) is the first human polyomavirus to be definitively linked to cancer. The mechanisms of MCV-induced oncogenesis and much of MCV biology are largely unexplored. In this study, we demonstrate that bromodomain protein 4 (Brd4) interacts with MCV large T antigen (LT) and plays a critical role in viral DNA replication. Brd4 knockdown inhibits MCV replication, which can be rescued by recombinant Brd4. Brd4 colocalizes with the MCV LT/replication origin complex in the nucleus and recruits replication factor C (RFC) to the viral replication sites. A dominant negative inhibitor of the Brd4-MCV LT interaction can dissociate Brd4 and RFC from the viral replication complex and abrogate MCV replication. Furthermore, obstructing the physiologic interaction between Brd4 and host chromatin with the chemical compound JQ1(+) leads to enhanced MCV DNA replication, demonstrating that the role of Brd4 in MCV replication is distinct from its role in chromatin-associated transcriptional regulation. Our findings demonstrate mechanistic details of the MCV replication machinery; providing novel insight to elucidate the life cycle of this newly discovered oncogenic DNA virus.


Asunto(s)
Replicación del ADN , ADN Viral/biosíntesis , Poliomavirus de Células de Merkel/fisiología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Replicación Viral/fisiología , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismo , Proteínas de Ciclo Celular , Cromatina/genética , Cromatina/metabolismo , ADN Viral/genética , Células HEK293 , Humanos , Proteínas Nucleares/genética , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/metabolismo , Factores de Transcripción/genética , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/metabolismo
20.
J Biol Chem ; 287(14): 10738-52, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22334664

RESUMEN

Chromatin structure organization is crucial for regulating many fundamental cellular processes. However, the molecular mechanism that regulates the assembly of higher-order chromatin structure remains poorly understood. In this study, we demonstrate that Brd4 (bromodomain-containing protein 4) protein participates in the maintenance of the higher-order chromatin structure. Brd4, a member of the BET family of proteins, has been shown to play important roles in cellular growth control, cell cycle progression, and cancer development. We apply in situ single cell chromatin imaging and micrococcal nuclease (MNase) assay to show that Brd4 depletion leads to a large scale chromatin unfolding. A dominant-negative inhibitor encoding the double bromodomains (BDI/II) of Brd4 can competitively dissociate endogenous Brd4 from chromatin to trigger severely fragmented chromatin morphology. Mechanistic studies using Brd4 truncation mutants reveal that the Brd4 C-terminal domain is crucial for maintaining normal chromatin structure. Using bimolecular fluorescence complementation technology, we demonstrate that Brd4 molecules interact intermolecularly on chromatin and that replacing Brd4 molecules by BDI/II causes abnormal nucleosome aggregation and chromatin fragmentation. These studies establish a novel structural role of Brd4 in supporting the higher chromatin architecture.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Proteínas de Ciclo Celular , Cromatina/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Nucleasa Microcócica/metabolismo , Imagen Molecular , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA