Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Med Virol ; 96(6): e29723, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828911

RESUMEN

Hepatitis B virus (HBV) can be completely suppressed after antiviral treatment; however, some patients with chronic hepatitis B (CHB) exhibit elevated alanine aminotransferase (ALT) levels and sustained disease progression. This study provides novel insights into the mechanism and potential predictive biomarkers of persistently elevated ALT (PeALT) in patients with CHB after complete viral inhibition. Patients having CHB with undetectable HBV DNA at least 12 months after antiviral treatment were enrolled from a prospective, observational cohort. Patients with PeALT and persistently normal ALT (PnALT) were matched 1:1 using propensity score matching. Correlations between plasma metabolites and the risk of elevated ALT were examined using multivariate logistic regression. A mouse model of carbon tetrachloride-induced liver injury was established to validate the effect of key differential metabolites on liver injury. Of the 1238 patients with CHB who achieved complete viral suppression, 40 (3.23%) had PeALT levels during follow-up (median follow-up: 2.42 years). Additionally, 40 patients with PnALT levels were matched as controls. Ser-Phe-Ala, Lys-Ala-Leu-Glu, 3-methylhippuric acid, 3-methylxanthine, and 7-methylxanthine were identified as critical differential metabolites between the two groups and independently associated with PeALT risk. Ser-Phe-Ala and Lys-Ala-Leu-Glu levels could be used to discriminate patients with PeALT from those with PnALT. Furthermore, N-acetyl- l-methionine (NALM) demonstrated the strongest negative correlation with ALT levels. NALM supplementation alleviated liver injury and hepatic necrosis induced by carbon tetrachloride in mice. Changes in circulating metabolites may contribute to PeALT levels in patients with CHB who have achieved complete viral suppression after antiviral treatment.


Asunto(s)
Alanina Transaminasa , Antivirales , Biomarcadores , Hepatitis B Crónica , Humanos , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/sangre , Hepatitis B Crónica/virología , Masculino , Femenino , Alanina Transaminasa/sangre , Antivirales/uso terapéutico , Adulto , Estudios Prospectivos , Persona de Mediana Edad , Biomarcadores/sangre , Animales , Ratones , Virus de la Hepatitis B , Respuesta Virológica Sostenida , ADN Viral/sangre , Modelos Animales de Enfermedad , Hígado/patología , Hígado/virología , Carga Viral
2.
Ecotoxicol Environ Saf ; 280: 116538, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833980

RESUMEN

Methamphetamine (Meth) is a potent psychostimulant with well-established hepatotoxicity. Gut microbiota-derived short-chain fatty acids (SCFAs) have been reported to yield beneficial effects on the liver. In this study, we aim to further reveal the mechanisms of Meth-induced hepatic injuries and investigate the potential protective effects of SCFAs. Herein, mice were intraperitoneally injected with 15 mg/kg Meth to induce hepatic injuries. The composition of fecal microbiota and SCFAs was profiled using 16 S rRNA sequencing and Gas Chromatography/Mass Spectrometry (GC/MS) analysis, respectively. Subsequently, SCFAs supplementation was performed to evaluate the protective effects against hepatic injuries. Additionally, Sigma-1 receptor knockout (S1R-/-) mice and fluvoxamine (Flu), an agonist of S1R, were introduced to investigate the mechanisms underlying the protective effects of SCFAs. Our results showed that Meth activated S1R and induced hepatic autophagy, inflammation, and oxidative stress by stimulating the MAPK/ERK pathway. Meanwhile, Meth disrupted SCFAs product-related microbiota, leading to a reduction in fecal SCFAs (especially Acetic acid and Propanoic acid). Accompanied by the optimization of gut microbiota, SCFAs supplementation normalized S1R expression and ameliorated Meth-induced hepatic injuries by repressing the MAPK/ERK pathway. Effectively, S1R knockout repressed Meth-induced activation of the MAPK/ERK pathway and further ameliorated hepatic injuries. Finally, the overexpression of S1R stimulated the MAPK/ERK pathway and yielded comparable adverse phenotypes to Meth administration. These findings suggest that Meth-induced hepatic injuries relied on the activation of S1R, which could be alleviated by SCFAs supplementation. Our study confirms the crucial role of S1R in Meth-induced hepatic injuries for the first time and provides a potential preemptive therapy.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Metanfetamina , Receptores sigma , Receptor Sigma-1 , Animales , Masculino , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Ácidos Grasos Volátiles/metabolismo , Heces/química , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Metanfetamina/toxicidad , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo/efectos de los fármacos , Receptores sigma/metabolismo
3.
Microorganisms ; 12(1)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257965

RESUMEN

Polyethylene terephthalate (PET), primarily utilized for food and beverage packaging, consistently finds its way into the human gut, thereby exerting adverse effects on human health. PET hydrolases, critical for the degradation of PET, have been predominantly sourced from environmental microbial communities. Given the fact that the human gut harbors a vast and intricate consortium of microorganisms, inquiry into the presence of potential PET hydrolases within the human gut microbiota becomes imperative. In this investigation, we meticulously screened 22,156 homologous sequences that could potentially encode PET hydrolases using the hidden Markov model (HMM) paradigm, drawing from 4984 cultivated genomes of healthy human gut bacteria. Subsequently, we methodically validated the hydrolytic efficacy of five selected candidate PET hydrolases on both PET films and powders composed of micro-plastics (MPs). Notably, our study also unveiled the influence of both diverse PET MP powders and their resultant hydrolysates on the modulation of cytokine expression in macrophages. In summary, our research underscores the ubiquitous prevalence and considerable potential of the human gut microbiota in PET hydrolysis. Furthermore, our study significantly contributes to the holistic evaluation of the potential health hazards posed by PET MPs to human well-being.

4.
Viruses ; 16(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38932182

RESUMEN

Tripartite motif (TRIM) proteins, comprising a family of over 100 members with conserved motifs, exhibit diverse biological functions. Several TRIM proteins influence viral infections through direct antiviral mechanisms or by regulating host antiviral innate immune responses. To identify TRIM proteins modulating hepatitis B virus (HBV) replication, we assessed 45 human TRIMs in HBV-transfected HepG2 cells. Our study revealed that ectopic expression of 12 TRIM proteins significantly reduced HBV RNA and subsequent capsid-associated DNA levels. Notably, TRIM65 uniquely downregulated viral pregenomic (pg) RNA in an HBV-promoter-specific manner, suggesting a targeted antiviral effect. Mechanistically, TRIM65 inhibited HBV replication primarily at the transcriptional level via its E3 ubiquitin ligase activity and intact B-box domain. Though HNF4α emerged as a potential TRIM65 substrate, disrupting its binding site on the HBV genome did not completely abolish TRIM65's antiviral effect. In addition, neither HBx expression nor cellular MAVS signaling was essential to TRIM65-mediated regulation of HBV transcription. Furthermore, CRISPR-mediated knock-out of TRIM65 in the HepG2-NTCP cells boosted HBV infection, validating its endogenous role. These findings underscore TRIM proteins' capacity to inhibit HBV transcription and highlight TRIM65's pivotal role in this process.


Asunto(s)
Virus de la Hepatitis B , Transcripción Genética , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Replicación Viral , Humanos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Células Hep G2 , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Hepatitis B/virología , Hepatitis B/genética , Hepatitis B/inmunología , Regiones Promotoras Genéticas , ARN Viral/genética , ARN Viral/metabolismo
5.
Sci Total Environ ; 935: 173285, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772488

RESUMEN

Dietary pollution of Aflatoxin B1 (AFB1) poses a great threat to global food safety, which can result in serious hepatic injuries. Following the widespread use of plastic tableware, co-exposure to microplastics and AFB1 has dramatically increased. However, whether microplastics could exert synergistic effects with AFB1 and amplify its hepatotoxicity, and the underlying mechanisms are still unelucidated. Here, mice were orally exposed to 100 nm polystyrene nanoplastics (NPs) and AFB1 to investigate the influences of NPs on AFB1-induced hepatic injuries. We found that exposure to only NPs or AFB1 resulted in colonic inflammation and the impairment of the intestinal barrier, which was exacerbated by combined exposure to NPs and AFB1. Meanwhile, co-exposure to NPs exacerbated AFB1-induced dysbiosis of gut microbiota and remodeling of the fecal metabolome. Moreover, NPs and AFB1 co-exposure exhibited higher levels of systemic inflammatory factors compared to AFB1 exposure. Additionally, NPs co-exposure further exacerbated AFB1-induced hepatic fibrosis and inflammation, which could be associated with the overactivation of the TLR4/MyD88/NF-κB pathway. Notably, Spearman's correlation analysis revealed that the exacerbation of NPs co-exposure was closely associated with microbial dysbiosis. Furthermore, microbiota from NPs-exposed mice (NPsFMT) partly reproduced the exacerbation of NPs on AFB1-induced systemic and hepatic inflammation, but not fibrosis. In summary, our findings indicate that gut microbiota could be involved in the exacerbation of NPs on AFB1-induced hepatic injuries, highlighting the health risks of NPs.


Asunto(s)
Aflatoxina B1 , Microbioma Gastrointestinal , Hígado , Microplásticos , Poliestirenos , Aflatoxina B1/toxicidad , Animales , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Poliestirenos/toxicidad , Microplásticos/toxicidad , Hígado/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas , Disbiosis/inducido químicamente , Nanopartículas/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA