Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 207(11): 1451-1463, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36790376

RESUMEN

Rationale: The resolution of inflammation is an active process coordinated by mediators and immune cells to restore tissue homeostasis. However, the mechanisms for resolving eosinophilic allergic lung inflammation triggered by inhaled allergens have not been fully elucidated. Objectives: Our objectives were to investigate the cellular mechanism of tissue-resident macrophages involved in the resolution process of eosinophilic lung inflammation. Methods: For the study, we used the institutional review board-approved protocol for human subsegmental bronchoprovocation with allergen, mouse models for allergic lung inflammation, and novel transgenic mice, including a conditional CCL26 knockout. The samples were analyzed using mass cytometry, single-cell RNA sequencing, and biophysical and immunological analyses. Measurements and Main Results: We compared alveolar macrophage (AM) subsets in the BAL before and after allergen provocation. In response to provocation with inhaled allergens, the subsets of AMs are dynamically changed in humans and mice. In the steady state, the AM subset expressing CX3CR1 is a relatively small fraction in bronchoalveolar space and lung tissue but drastically increases after allergen challenges. This subset presents unique patterns of gene expression compared with classical AMs, expressing high C1q family genes. CX3CR1+ macrophages are activated by airway epithelial cell-derived CCL26 via a receptor-ligand interaction. The binding of CCL26 to the CX3CR1+ receptor induces CX3CR1+ macrophages to secrete C1q, subsequently facilitating the clearance of eosinophils. Furthermore, the depletion of CX3CR1 macrophages or CCL26 in airway epithelial cells delays the resolution of allergic lung inflammation displaying prolonged tissue eosinophilia. Conclusions: These findings indicate that the CCL26-CX3CR1 pathway is pivotal in resolving eosinophilic allergic lung inflammation.


Asunto(s)
Alveolitis Alérgica Extrínseca , Hipersensibilidad , Neumonía , Eosinofilia Pulmonar , Humanos , Ratones , Animales , Complemento C1q/metabolismo , Pulmón/metabolismo , Macrófagos , Alérgenos , Inflamación/metabolismo , Neumonía/metabolismo , Quimiocina CCL26/metabolismo
2.
Nat Rev Cancer ; 12(11): 782-92, 2012 11.
Artículo en Inglés | MEDLINE | ID: mdl-23076158

RESUMEN

Phospholipases (PLC, PLD and PLA) are essential mediators of intracellular and intercellular signalling. They can function as phospholipid-hydrolysing enzymes that can generate many bioactive lipid mediators, such as diacylglycerol, phosphatidic acid, lysophosphatidic acid and arachidonic acid. Lipid mediators generated by phospholipases regulate multiple cellular processes that can promote tumorigenesis, including proliferation, migration, invasion and angiogenesis. Although many individual phospholipases have been extensively studied, how phospholipases regulate diverse cancer-associated cellular processes and the interplay between different phospholipases have yet to be fully elucidated. A thorough understanding of the cancer-associated signalling networks of phospholipases is necessary to determine whether these enzymes can be targeted therapeutically.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias/metabolismo , Fosfolipasas/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Neoplasias/fisiopatología , Fosfolipasas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA