Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(6): 2582-2589, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38294965

RESUMEN

The Janus interface, comprising multiple functional heterointerfaces with contrasting functionalities within a single interface, has recently garnered widespread research interest. Herein, a Janus biosensing interface is obtained via wavelength-resolved laser illumination. Deoxyribonucleic acid bridges the electrochemical probe of methylene blue (MB) and plasmonic gold nanoparticles (AuNPs), achieving a sensitive detection performance. MB shows differential electrochemical signals under front (I532front) and back (I650back) laser illumination at 532 and 650 nm, respectively, owing to the selective wavelength-resolved effect. Thus, the presence of a wavelength-resolved laser enabled the design of a biosensing interface with Janus properties. The change in the distance between MB and AuNPs induced by aflatoxin B1 (AFB1) indicates that a sensitive response of the Janus biosensing interface can be achieved. A ratiometric strategy is introduced to describe the electrochemical signals of the I532front and I650back for improved robustness. The obtained linear range is 0.0005-50 ng mL-1, with a detection limit of 0.175 pg mL-1. Our study demonstrated that the wavelength-resolved Janus interface enables an electrochemical biosensor with excellent sensitivity. This finding provides an efficient approach for improving biosensor performance.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Oro/química , Técnicas Electroquímicas , Nanopartículas del Metal/química , Luz , Aflatoxina B1/análisis , Azul de Metileno/química , Límite de Detección , Aptámeros de Nucleótidos/química
2.
Inorg Chem ; 63(4): 2224-2233, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38214448

RESUMEN

Bifunctional materials have attracted ongoing interest in the field of detection and removal of contaminants because of their integration of two functions, but they exhibit commonly exceptional performance in only one of these two aspects. The interaction between the two functional units of the bifunctional materials may compromise their sensing and adsorption abilities. Guided by the concept of domain building blocks (DBBs), a hierarchical metal-organic framework (MOF)-on-MOF hybrid was designed by growing gold nanoclusters (AuNCs)-embedded zeolitic imidazolate framework 8 (AuNCs/ZIF-8) on the surface of Zr-MOF (UiO-66-NH2) for the simultaneous detection and removal of Hg2+. In the hybrid, the amino groups (-NH2) and AuNCs─which were the adsorption groups and sensing units, respectively, were isolated from each other. Specifically, the adsorption groups (-NH2) were assembled in the inner UiO-66-NH2 layer, while the sensing units (AuNCs) were confined in the outer ZIF-8 layer. This hierarchical structure not only spatially hindered the electron transfer between these two units but also triggered the aggregation-induced emission of AuNCs because of the confinement of ZIF-8 on the AuNCs, thus changing the fluorescence of AuNCs from quenching to enhancement. The newly prepared UiO-66-NH2@AuNCs/ZIF-8 hybrid, as expected, showed an ultralow detection limit (0.42 ppb) and a high adsorption capacity (129.9 mg·g-1) for Hg2+. Overall, this work provides a feasible approach to improve the integrated performance of MOF-based composites based on DBBs.

3.
Mikrochim Acta ; 191(2): 108, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244133

RESUMEN

Microcystin LR (MC-LR) is a hazardous cyanotoxin produced by cyanobacteria during freshwater eutrophication, which can cause liver cancer. Here, a photoelectrochemical (PEC) aptasensor based on methylene blue (MB)-loaded Ni-MOF composite (Ni-MOF/MB) with spatial confinement was constructed for the sensitive detection of MC-LR. Ni-MOF with two-dimensional sheet structure was prepared via a liquid-liquid interface synthesis method with environmental-friendly solvent and milder reaction conditions. Benefiting from the uniform pore size, Ni-MOF acted as reaction platform to anchor the photosensitive molecule MB. The electron donor, ascorbic acid (AA), was produced by alkaline phosphatase (ALP) loaded on DNA strand catalyzing ascorbic acid phosphate. The generated AA was absorbed by Ni-MOF/MB, thereby effectively improving the utilization of AA and avoiding the external environment interferences to enlarge the photocurrent of MB. For analysis, ALP-labeled aptamer can specifically recognize MC-LR by forming a complex to strip from aptasensor, thus leading to a  decreased photocurrent. The developed PEC aptasensor offered a linear range of 10 fM-100 pM with a detection limit of 6 fM. It was successfully employed for detecting MC-LR in farm water and fish meat, and the results were validated by ultrahigh-performance liquid chromatography-mass spectrometry. This method presents a new idea of MOF-limited domain for PEC aptasensing.


Asunto(s)
Aptámeros de Nucleótidos , Toxinas Marinas , Microcistinas , Nanocompuestos , Animales , Azul de Metileno/química , Técnicas Electroquímicas , Aptámeros de Nucleótidos/química , Ácido Ascórbico
4.
Anal Chem ; 95(46): 17108-17116, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37948569

RESUMEN

Pursuing a more efficient signal amplification strategy is highly demanded for improving the performance of the promising cathodic photoelectrochemical (PEC) sensors. In this work, we present an extremely effective dual signal amplification strategy by the integration of a Z-scheme nanohybrids-based photocathode with the effective signal modulation of an organic photoelectrochemical transistor (OPECT) device. Specifically, photocathodic gate material of CdTe-BiOBr nanohybrids with a Z-scheme electron-transfer route was designed and synthesized for preliminary improvement of the activity of the photogate; afterward, signal modulation of the OPECT system by the photocathodic gate of CdTe-BiOBr was then accomplished for further signal amplification by 2 orders of magnitude. As a result, the output PEC signal of CdTe-BiOBr was enhanced by 17.5-fold as compared to BiOBr, and the channel current (IDS) of the OPECT device was 117-fold magnified than its gate current (IG) response. Exemplified by tetracycline (TC) as a model target and aptamer as the specific recognition element, a versatile cathodic aptasensing platform was constructed based on the proposed OPECT device. The introduced OPECT aptasensor merits advantages, including a good linear range (1.0 × 10-12 to 1.0 × 10-6 M), a low limit of detection (4.2 × 10-13 M), and superior sensitivity than the traditional PEC methods for TC detection, which represents a universal protocol for developing the innovative photocathodic OPECT sensing platform toward accurate analysis.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección , Telurio , Tetraciclina/análisis , Antibacterianos/análisis
5.
Anal Chem ; 95(49): 18224-18232, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38013427

RESUMEN

Reversible electrochromic supercapacitors (ESCs) have attracted considerable interest as visual display screens. The use of ESCs in combination with a photoelectrochemical (PEC) biosensor promises to improve the detection efficiency. Herein, a visual PEC biosensor is developed by introducing a circuit module between a PEC-sensing platform (PSP) and a reversible ESC for Cry1Ab protein detection. In PSP, a type II MgTi2O5/CdSe heterojunction effectively drives charge separation by their cross-matched band gap structures, generating an amplified photocurrent. Next, the circuit module is designed to connect the PSP and ESC, realizing the signal conversion from photocurrent to voltage. ESC, as a visual display screen, produces reversible color changes with different voltages. As the concentration of Cry1Ab increases, the photocurrent decreases due to the specific binding between the aptamer and Cry1Ab in PSP, while the color of the reversible ESC changes from green to blue. To improve the integrity of the device, a portable PEC biosensor is further constructed via three-dimensional printing for dual-modal Cry1Ab protein detection, thus collecting both PEC and visual signals. The linear ranges are 0.3-3000 ng mL-1 for PEC mode and 1-1000 ng mL-1 for visual mode. This work presents a portable, efficient, sensitive, and visualized detection system, providing an important reference for practical visualization applications.


Asunto(s)
Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Compuestos de Cadmio/química , Técnicas Electroquímicas , Compuestos de Selenio/química , Puntos Cuánticos/química , Técnicas Biosensibles/métodos , Límite de Detección
6.
Inorg Chem ; 62(7): 3123-3133, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36749708

RESUMEN

The development of multifunctional materials for the synchronous detection and removal of mercury ions (Hg2+) is in high demand. Although a few multifunctional materials as a fluorescent indicator and adsorbent have achieved this aim, the feedback of their removal efficiency still depends on other methods. Herein, magnetic Fe3O4 nanoparticles (MNPs) and 6-aza-2-thiothymine-protected gold nanoclusters (ATT-AuNCs) were rationally assembled into a zeolitic imidazolate framework 8 (ZIF-8) structure via a one-pot method. The coordination assembly of ATT-AuNCs and ZIF-8 not only strengthened the aurophilic interactions of adjacent ATT-AuNCs but also induced the restriction of intramolecular motion of ATT with a six-membered heterocyclic structure. As a consequence, the fluorescence (FL) quantum yield of MNPs/ATT-AuNCs@ZIF-8 was 12.5-fold higher than that of pristine ATT-AuNCs. Benefiting from the enhanced FL emission, MNPs/ATT-AuNCs@ZIF-8 showed improved sensitivity for Hg2+ detection and therefore could evaluate the removal efficiency via FL detection, without relying on another detection method. Additionally, the nanocomposite also displayed a satisfactory removal capability for Hg2+, including a short capture time (20 min), a high removal efficiency (>96.9%), and excellent reusability (10 cycles). This work provides an approach for customizing functional nanocomposites to concurrently detect and remove Hg2+ with superior performance, especially for high detection sensitivity.

7.
Luminescence ; 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38148625

RESUMEN

It is of great significance to develop an effective method for methyl parathion (MP) detection. Herein, a novel nitrogen-doped titanium carbide quantum dots (N-Ti3 C2 QDs) was prepared and used to construct a simple and sensitive fluorescence sensing platform of MP by making use of inner filter effect (IFE). The prepared N-Ti3 C2 QDs can exhibit strong blue fluorescence at 434 nm. Meanwhile, MP could hydrolyze to produce p-nitrophenol (p-NP) under alkaline conditions, which showed a characteristic ultraviolet-visible (UV-visible) absorption peak at 405 nm, resulting in the fluorescence of N-Ti3 C2 QDs is effectively quenched by p-NP. In addition, the investigation of time-resolved fluorescence decays indicated that the corresponding quenching mechanism of p-NP on N-Ti3 C2 QDs is due to the IFE. After optimizing the conditions, the as-developed fluorescence sensing platform displayed wide detection range (0.1-30 µg mL-1 ) and low detection limit (0.036 µg mL-1 ) for MP, and it was also successfully applied for MP analysis in real water samples, thus it is expected that this simple, sensitive and enzyme-free sensing platform shows great applications.

8.
Anal Chem ; 94(2): 1294-1301, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34965091

RESUMEN

Ferrocene (Fc) is a common quencher of Ru(bpy)32+ luminescence. However, interactions between Fc and Ru(bpy)32+ can be extremely complicated. In this work, we reported the first use of Fc to regulate the electrochemiluminescence (ECL) of Ru(bpy)32+ by tuning the length of the DNA sequence between Fc and the luminophore of nitrogen-doped graphene quantum dots-Ru(bpy)32+-doped silica nanoparticles (SiO2@Ru-NGQDs). The ECL of SiO2@Ru-NGQDs was depressed when the distance between Ru(bpy)32+ and Fc was less than 8 nm; a stronger ECL was observed when the distance was more than 12 nm. The switching of the ECL of Ru(bpy)32+ by Fc was attributed to the electron transfer mechanism, in which Fc participated in the redox of Ru(bpy)32+ for "signal-off" ECL; this favored electron transfer at the electrode fabricated with an Fc-labeled aptamer (Fc-apt) and SiO2@Ru-NGQDs for "signal-on" ECL depending on the length of the DNA sequence. Here, a dual-signal readout aptasensor for aflatoxin B1 (AFB1) detection was developed via the enhanced ECL of SiO2@Ru-NGQDs by Fc-apt. The redox currents of Fc and the ECL of Ru(bpy)32+ were simultaneously collected as yardsticks, and both decreased with higher concentrations of AFB1. The aptasensor allowed linear ranges of 3 × 10-5 to 1 × 102 ng mL-1 for ECL mode and 1 × 10-3 to 3 × 103 ng mL-1 for electrochemical mode. Our work provides insight into the interactions between Fc and Ru(bpy)32+. The dual-signal readout strategy is a potential platform for the versatile design of aptasensors.


Asunto(s)
Técnicas Biosensibles , Dióxido de Silicio , Aflatoxina B1 , Técnicas Electroquímicas , Electrones , Mediciones Luminiscentes , Metalocenos
9.
Environ Monit Assess ; 194(2): 95, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35029753

RESUMEN

X-ray fluorescence (XRF) is widely used to rapidly detect heavy metals in soil. Spectra processing has been an important research topic to improve accuracy. In this study, 80 soil samples were analyzed by XRF under indoor conditions, where different preprocessing and quantitative analysis methods were compared in terms of prediction accuracy. Denoising algorithms were used to preprocess the soil spectra before establishing prediction models for As, Pb, Cu, Cr, and Cd in soil. The influence of denoising methods on the prediction effects of different models was compared and discussed. The results on five heavy metal spectra show that the proper spectral preprocessing method can effectively improve the prediction performance of the model. The multilayer perceptron model provides promising analysis and modeling for the five metal elements. The determination coefficients (R2) of the models were 0.857, 0.976, 0.977, 0.995, and 0.886, respectively. The proposed method provides the potential to support accurate quantitation by XRF analysis.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Monitoreo del Ambiente , Fluorescencia , Metales Pesados/análisis , Redes Neurales de la Computación , Suelo , Contaminantes del Suelo/análisis , Rayos X
10.
Compr Rev Food Sci Food Saf ; 20(2): 1887-1909, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33410224

RESUMEN

Mycotoxins are toxic compounds naturally produced by certain types of fungi. The contamination of mycotoxins can occur on numerous foodstuffs, including cereals, nuts, fruits, and spices, and pose a major threat to humans and animals by causing acute and chronic toxic effects. In this regard, reliable techniques for accurate and sensitive detection of mycotoxins in agricultural products and food samples are urgently needed. As an advanced analytical tool, surface-enhanced Raman spectroscopy (SERS), presents several major advantages, such as ultrahigh sensitivity, rapid detection, fingerprint-type information, and miniaturized equipment. Benefiting from these merits, rapid growth has been observed under the topic of SERS-based mycotoxin detection. This review provides a comprehensive overview of the recent achievements in this area. The progress of SERS-based label-free detection, aptasensor, and immunosensor, as well as SERS combined with other techniques, has been summarized, and in-depth discussion of the remaining challenges has been provided, in order to inspire future development of translating the techniques invented in scientific laboratories into easy-to-operate analytic platforms for rapid detection of mycotoxins.


Asunto(s)
Técnicas Biosensibles , Micotoxinas , Animales , Hongos , Humanos , Inmunoensayo , Espectrometría Raman
11.
Bioconjug Chem ; 30(11): 2974-2981, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31661959

RESUMEN

Photodynamic therapy (PDT) has attracted extensive attention in recent years as a noninvasive and locally targeted cancer treatment approach. Nanoparticles have been used to improve the solubility and pharmacokinetics of the photosensitizers required for PDT; however, nanoparticles also suffer from many shortcomings including uncontrolled drug release and low tumor accumulation. Herein, we describe a novel biodegradable nanoplatform for the delivery of the clinically used PDT photosensitizer benzoporphyrin derivative monoacid ring A (BPD-MA) to tumors. Specifically, the hydrophobic photosensitizer BPD was covalently conjugated to the amine groups of a dextran-b-oligo (amidoamine) (dOA) dendron copolymer, forming amphiphilic dextran-BPD conjugates that can self-assemble into nanometer-sized micelles in water. To impart additional imaging capabilities to these micelles, superparamagnetic iron oxide nanoparticles (SPIONs) were encapsulated within the hydrophobic core to serve as a magnetic resonance imaging (MRI) contrast agent. The use of a photosensitizer as a hydrophobic building block enabled facile and reproducible synthesis and high drug loading capacity (∼30%, w/w). Furthermore, covalent conjugation of BPD to dextran prevents the premature release of drug during systemic circulation. In vivo studies show that the intravenous administration of dextran-BPD coated SPION nanoparticles results in significant MR contrast enhancement within tumors 24 h postinjection and PDT led to a significant reduction in the tumor growth rate.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Dextranos/química , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Medios de Contraste/metabolismo , Liberación de Fármacos , Femenino , Compuestos Férricos/química , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Micelas , Fármacos Fotosensibilizantes/química , Polímeros/química , Porfirinas/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Anal Chem ; 86(12): 5898-905, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24837693

RESUMEN

Novel Pd-Ni alloy nanoparticle/carbon nanofiber (Pd-Ni/CNF) composites were successfully prepared by a simple method involving electrospinning of precursor polyacrylonitrile/Pd(acac)2/Ni(acac)2 nanofibers, followed by a thermal process to reduce metals and carbonize polyacrylonitrile. The nanostructures of the resulting Pd-Ni/CNF nanocomposites were carefully examined by a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and X-ray photoelectron spectra (XPS). For all the nanocomposites, the Pd-Ni alloy nanoparticles (NPs) were dispersed uniformly and embedded firmly within the framework or on the surface of CNF. The size, composition, and alloy homogeneity of the Pd-Ni alloy NPs could be readily tailored by controlling the feed ratio of metal precursors and the thermal treatment process. Cyclic voltammetric studies showed enhanced redox properties for Pd-Ni/CNF-based electrodes relative to the Ni-metal electrode and significantly improved electrocatalytic activity for sugar (e.g., glucose, fructose, sucrose, and maltose) oxidation. The application potential of Pd-Ni/CNF-based electrodes in flow systems for sugars detection was explored. A very low limit of detection for sugars (e.g., 7-20 nM), high resistance to surface fouling, excellent signal stability and reproducibility, and a very wide detection linear range (e.g., 0.03-800 µM) were revealed for this new type of Pd-Ni/CNF nanocomposite as the detecting electrode. Such detection performances of Pd-Ni/CNF-based electrodes are superior to those of state-of-the-art nonenzymatic sugar detectors that are commercially available or known in the literature.


Asunto(s)
Carbohidratos/análisis , Carbono/química , Nanopartículas del Metal , Nanofibras , Níquel/química , Paladio/química , Catálisis , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Espectroscopía de Fotoelectrones , Termogravimetría , Difracción de Rayos X
13.
Biosens Bioelectron ; 251: 116121, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373373

RESUMEN

Bis(2-ethylhexyl)phthalate (DEHP), an endocrine disruptor, shows carcinogenic, teratogenic, mutagenic and estrogenic effects. It is easy to release from plastic materials and migrate to soil environment, causing serious pollution and posing a great threat to human health. In our work, a photoelectrochemical (PEC) sensing platform for DEHP detection was constructed using BiOI/ZnO nanoarrays (NRs) as the transducer species and the DEHP aptamers as the biological recognition elements. ZnO NRs with three-dimensional and large diameter area were prepared by hydrothermal method to increase the light absorption capacity. Coupling BiOI in a narrow band gap with ZnO NRs strengthened visible-light absorption, while promoting charge carrier separation and transportation. This was attributed to the generation of an internal electric field between BiOI and ZnO NRs, exhibiting obvious photocurrent response. The as-developed PEC sensing platform demonstrated great sensing performance for detection of DEHP. Furthermore, the photocurrent varied and the logarithm of DEHP concentration showed a linear relationship from 1.0 × 10-11 to 5.0 × 10-7 mol/L, and the limit of detection was estimated to be 3.8 × 10-12 mol/L. In the meantime, while evaluating its usage in real soil samples, satisfying outcomes were realized. Thus, the as-proposed PEC sensing platform provided a potential device to monitor DEHP in the environment.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Dietilhexil Ftalato , Óxido de Zinc , Humanos , Técnicas Biosensibles/métodos , Suelo
14.
Anal Chim Acta ; 1293: 342269, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331550

RESUMEN

BACKGROUND: Tetracycline (TC), a cost-effective broad-spectrum antibacterial drug, has been excessively utilized in the livestock and poultry industry, leading to a serious overabundance of TC in livestock wastewater. However, conventional analytical methods such as liquid chromatography and gas chromatography face challenges in achieving sensitive detection of trace amounts of TC in complex substrates. Therefore, it is imperative to develop a highly sensitive and anti-interference analytical method for the detection of tetracycline in livestock wastewater. RESULTS: A porphyrin-based MOF (PCN-224)-confined carbon dots (CDs) material (CDs@PCN-224) was synthesized by a "bottle-around-ship" strategy. The reduced carrier migration distance is conducive to the separation of electron-hole pairs and enhanced the photocurrent signal due to the tight coupling of CDs and PCN-224. Further, molecularly imprinted polymer (MIP) was synthesized by rapid in-situ UV-polymerization and employed as a recognition element. The specific recognition of the target by imprinted cavities blocks electron transfer, resulting in a "turn off" response signal, thus realizing the selective detection of TC. Under optimal conditions, the constructed MIP-PEC cathodic sensor detected 1.00 × 10-12 M to 1.00 × 10-7 M of TC sensitively, with a limit of detection of 3.72 × 10-13 M. In addition, the proposed MIP-PEC sensor demonstrated good TC detection performance in actual livestock wastewater. SIGNIFICANCE: The strategy based on MOF pore-confined quantum dots can effectively enhance the photocurrent response of the photosensitive substrate. Simultaneously, the MIP constructed by in-situ rapid UV-polymerization showed excellent anti-interference and reusable properties. This work provides a promising MIP-PEC cathodic sensing method for the rapid and sensitive detection of antibiotics in complex-matrix environmental samples.


Asunto(s)
Estructuras Metalorgánicas , Impresión Molecular , Puntos Cuánticos , Puntos Cuánticos/química , Aguas Residuales , Impresión Molecular/métodos , Límite de Detección , Tetraciclina/análisis , Antibacterianos , Carbono/química
15.
Talanta ; 273: 125843, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492285

RESUMEN

Ligand-protected gold nanoclusters (AuNCs) have become promising nanomaterials in fluorescence (FL) methods for mercury ions (Hg2+) monitoring, but low FL efficiency hinders their widespread application. Herein, AuNCs/cerium-based metal-organic frameworks (AuNCs/Ce-MOFs) were prepared by loading 6-aza-2-thiothymine-protected AuNCs (ATT-AuNCs) with aggregation-induced emission (AIE) effect on the surface of Ce-MOFs by electrostatic attraction. This strategy improved the FL intensity of AuNCs through two aspects: (i) the AIE effect of ATT-AuNCs and (ii) the confinement effect of Ce-MOFs, which improved the restriction of intramolecular motion (RIM) of ATT-AuNCs. In addition, Ce-MOFs could adsorb and aggregate Hg2+ during detection, which might increase the local concentration. Therefore, based on the high FL signal of AuNCs/Ce-MOFs and enriched Hg2+, sensitive detection of Hg2+ could be achieved. More importantly, the strong specific recognition between AuNCs and Hg2+ could guarantee selectivity. The developed FL sensor exhibited superior detection performances with a wide linear range of 0.2-500 ng mL-1 and a low detection limit of 0.067 ng mL-1. Furthermore, the FL sensor used for sensitive and selective detection of Hg2+ in real samples, and the results agreed well with the standard method. In summary, this work proposed an effective and generalized strategy for improving the FL efficiency of AuNCs, which would greatly facilitate their application in pollutant monitoring.

16.
Anal Chim Acta ; 1285: 342030, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38057051

RESUMEN

BACKGROUND: As one of the most potent environmental estrogens, 17ß-estradiol (E2), which can be enriched into organisms through the food chain and cause harmful biological effects in humans, has been frequently detected in the water environment of the world. High performance liquid chromatography (HPLC) and gas chromatograohy-mass spectrometry (GC/MS) have been widely used for quantification of E2. Despite excellent accuracy, tedious pretreatment and expensive instruments result in their limited application. It is clear that there is an urgent need to establish simple, sensitive and accurate methods for the determination of E2. RESULTS: A split aptamer-based sandwich-type ratiometric biosensor based on split aptamer was developed by coupling photoelectrochemical and electrochemical assays for E2 detection. For analysis, the two fragments of split aptamer recognized E2 by forming sandwich structure, which triggered hybridization chain reaction (HCR) to produce double-stranded DNA (dsDNA) with CdTe quantum dots (QDs) labeled hairpin DNA. The resultant dsDNA can further absorb methylene blue (MB) to sensitize CdTe QDs for an enlarged photocurrent (IPEC) and output a redox current of IMB, and both of them acted as response signals for detection; [Fe(CN)6]3-/4- probe produced redox current of I[Fe(CN)6]3-/4- as reference signal. Using IMB/I[Fe(CN)6]3-/4- and IPEC/I[Fe(CN)6]3-/4- as yardsticks, the developed split aptamer-based sandwich-type ratiometric biosensor provides two linear ranges of 0.1-5000 pg mL-1 for IMB/I[Fe(CN)6]3-/4- and 0.1-10000 pg mL-1 for IPEC/I[Fe(CN)6]3-/4- with detection limits of 0.06 pg mL-1 and 0.02 pg mL-1, respectively. SIGNIFICANCE: These results of the biosensor are benefiting from the coupling of photoelectrochemical (PEC) and electrochemical (EC) assays as well as the unique cooperative recognition mechanism of split aptamer. This method not only enabled the biosensor to be successfully applied to the determination of E2 in lake water, but also broadens the prospects for the realization of sensitive and accurate detection of E2.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Humanos , Compuestos de Cadmio/química , Puntos Cuánticos/química , Telurio/química , Técnicas Biosensibles/métodos , ADN , Aptámeros de Nucleótidos/química , Estradiol/análisis , Agua , Técnicas Electroquímicas/métodos , Límite de Detección , Oro/química
17.
ACS Appl Mater Interfaces ; 16(25): 32466-32480, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38864420

RESUMEN

Multimodal flexible sensors, consisting of multiple sensing units, can sense and recognize different external stimuli by outputting different types of response signals. However, the recovery and recycling of multimodal sensors are impeded by complex structures and the use of multiple materials. Here, a bimodal flexible sensor that can sense strain by resistance change and temperature by voltage change was constructed using poly(vinyl alcohol) hydrogel as a matrix and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) as a sensing material due to its conductivity and thermoelectric effect. The plasticity of hydrogels, along with the simplicity of the sensor's components and structure, facilitates easy recovery and recycling. The incorporation of citric acid and ethylene glycol improved the mechanical properties, strain hysteresis, and antifreezing properties of the hydrogels. The sensor exhibits a remarkable response to strain, characterized by high sensitivity (gauge factor of 4.46), low detection limit (0.1%), fast response and recovery times, minimal hysteresis, and excellent stability. Temperature changes induced by hot air currents, hot objects, and light cause the sensor to exhibit high response sensitivity, fast response time, and good stability. Additionally, variations in ambient humidity and temperature minimally affect the sensor's strain response, and temperature response remains unaffected by humidity changes. The recycled sensors are essentially unchanged for bimodal sensing of strain and temperature. Finally, bimodal sensors are applied to monitor body motion, and robots to sense external stimuli.

18.
J Hazard Mater ; 476: 134967, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38936190

RESUMEN

Hg2+ contamination poses a serious threat to the environment and human health. Although gold nanoclusters (Au NCs) have been utilized as fluorescence probes or colorimetric nanozymes for performing Hg2+ assays by using a single method, designing multifunctional nanoclusters as fluorescent nanozyme remains challenging. Herein, Ce-aggregated gold nanoclusters (Ce-Au NCs) were reported with "three in one" functions to generate strong fluorescence, excellent peroxidase-like activity, and the highly specific recognition of Hg2+ via its metallophilic interaction. A portable fluorescence and colorimetric dual-mode sensing device based on Ce-Au NCs was developed for on-site visual analysis of Hg2+. In the presence of Hg2+, fluorescence was effectively quenched and the paper-based chips gradually darkened from green till they became completely absent, while peroxidase-like activity was significantly enhanced. Two independent signals were captured by one identification unit, which provided self-validation to improve reliability and accuracy. Therefore, this work presents a simple synthesis of a multifunctional fluorescent nanozyme, and the developed portable device for on-site visual detection has considerable potential for application in the rapid on-site analysis of heavy metal ions in the environment.

19.
ACS Sens ; 9(6): 3377-3386, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38783424

RESUMEN

Comprehending the charge transfer mechanism at the semiconductor interfaces is crucial for enhancing the electronic and optical performance of sensing devices. Yet, relying solely on single signal acquisition methods at the interface hinders a comprehensive understanding of the charge transfer under optical excitation. Herein, we present an integrated photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) platform based on quantum dots/metal-organic framework (CdTe/Yb-TCPP) nanocomposites for investigating the charge transfer mechanism under photoexcitation in multiple dimensions. This integrated platform allows simultaneous PEC and SERS measurements with a 532 nm laser. The obtained photocurrent and Raman spectra of the CdTe/Yb-TCPP nanocomposites are simultaneously influenced by variable bias voltages, and the correlation between them enables us to predict the charge transfer pathway. Moreover, we integrate gold nanorods (Au NRs) into the PEC-SERS system by using magnetic separation and DNA biometrics to construct a biosensor for patulin detection. This biosensor demonstrates the voltage-driven ON/OFF switching of PEC and SERS signals, a phenomenon attributed to the plasmon resonance effect of Au NRs at different voltages, thereby influencing charge transfer. The detection of patulin in apples verified the applicability of the biosensor. The study offers an efficient approach to understanding semiconductor-metal interfaces and presents a new avenue for designing high-performance biosensors.


Asunto(s)
Compuestos de Cadmio , Técnicas Electroquímicas , Oro , Patulina , Puntos Cuánticos , Semiconductores , Espectrometría Raman , Telurio , Espectrometría Raman/métodos , Telurio/química , Compuestos de Cadmio/química , Técnicas Electroquímicas/métodos , Puntos Cuánticos/química , Patulina/análisis , Oro/química , Estructuras Metalorgánicas/química , Técnicas Biosensibles/métodos , Nanotubos/química , Iterbio/química , Malus/química , Nanocompuestos/química
20.
Food Chem ; 446: 138817, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401299

RESUMEN

Aflatoxin B1 (AFB1) and zearalenone (ZEN) are two mycotoxins that often co-occur in corn. A surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) that can simultaneously detect AFB1 and ZEN in corn samples was developed employing the core-interlayer-satellite magnetic nanocomposites (Fe3O4@PEI/AuMBA@AgMBA) as dual-functional SERS tags. Under the optimal conditions, the detection ranges of AFB1 and ZEN in corn samples were 0.1-10 µg/kg and 4-400 µg/kg, respectively. Moreover, the test results for two mycotoxins in contaminated corn samples employing the suggested SERS-LFIA was in line with those of the HPLC technique. In view of its satisfactory sensitivity, accuracy, precision and short testing time (20 min), the developed system has a promising application prospect in the on-site simultaneous detection of AFB1 and ZEN.


Asunto(s)
Micotoxinas , Zearalenona , Zearalenona/análisis , Aflatoxina B1/análisis , Micotoxinas/análisis , Magnetismo , Zea mays , Fenómenos Magnéticos , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA