Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 37(12): e23266, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37889840

RESUMEN

Adipogenesis is a tightly regulated process, and its dysfunction has been linked to metabolic disorders such as obesity. Forkhead box k1 (Foxk1) is known to play a role in the differentiation of myogenic precursor cells and tumorigenesis of different types of cancers; however, it is not clear whether and how it influences adipocyte differentiation. Here, we found that Foxk1 was induced in mouse primary bone marrow stromal cells (BMSCs) and established mesenchymal progenitor/stromal cell lines C3H/10T1/2 and ST2 after adipogenic treatment. In addition, obese db/db mice have higher Foxk1 expression in inguinal white adipose tissue than nonobese db/m mice. Foxk1 overexpression promoted adipogenic differentiation of C3H/10T1/2, ST2 cells and BMSCs, along with the enhanced expression of CCAAT/enhancer binding protein-α, peroxisome proliferator-activated receptor γ (Pparγ), and fatty acid binding protein 4. Moreover, Foxk1 overexpression enhanced the expression levels of lipogenic factors during adipogenic differentiation in both C3H/10T1/2 cells and BMSCs. Conversely, Foxk1 silencing impaired these cells from fully differentiating. Furthermore, adipogenic stimulation induced the nuclear translocation of Foxk1, which depended on the mTOR and PI3-kinase signaling pathways. Subsequently, Foxk1 is directly bound to the Pparγ2 promoter, stimulating its transcriptional activity and promoting adipocyte differentiation. Collectively, our study provides the first evidence that Foxk1 promotes adipocyte differentiation from progenitor cells by promoting nuclear translocation and upregulating the transcriptional activity of the Pparγ2 promoter during adipogenic differentiation.


Asunto(s)
Adipogénesis , PPAR gamma , Ratones , Animales , Adipogénesis/fisiología , PPAR gamma/genética , PPAR gamma/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Adipocitos/metabolismo , Ratones Endogámicos C3H , Diferenciación Celular , Obesidad/metabolismo , Células 3T3-L1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA