Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Phys Chem Chem Phys ; 20(35): 22660-22673, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30132478

RESUMEN

The unusual bonding pattern and proximal heteroatom substitution in π-cross conjugation produced distinct changes in the energy levels and photophysical behaviour of the dyes. To seek an understanding of the origin of these fluctuations, we have carried out a detailed computational investigation on a series of D-π1-π2 (A1)-A2 structured dyes comprised of common donor-spacer (auxiliary acceptor) units but varied the anchoring parts. In this study, we introduced a novel dimethylamino substituted fluorene-based triarylamine donor unit and evaluated its donating strength. Based on the comparison of DFT computed energy levels with experimental results, we have proposed an orbital splitting pattern to explain the energy level and photophysical properties of the linear vs. cross-conjugated dyes with respect to the linking position of the anchoring unit and benzo[1,2,5]thiadiazole (BTD) substitution. The smallest HOMO-LUMO gap of B3 mainly originated from the weak overlap of the directionality mismatch of the orbital interaction imposed by cross-conjugation. The inefficient overlap in B3 can possibly influence the energy levels but failed to enhance the charge transfer transitions upon photoexcitation. On the other hand, ß-heteroatom substitution in bridged dyes partially enhanced π-delocalization over the cross conjugation and produced a significant ICT absorption with an optoelectronic response in the NIR region. BTD acceptor substitution increased the HOMO-LUMO gap of the bridged dyes. NBO analysis was performed to corroborate our predictions. DOS-PDOS analysis of the dyes@TiO2 was employed to investigate the electron injection rate of linear vs. bridged dyes. The anchoring pattern and large torsional deviation of the carboxylate anchoring group upon TiO2 adsorption drastically decreased the photovoltaic performance of the bridged dyes. The results obtained from this study provided a detailed understanding of how to surmount the cross-conjugation with the aid of ß-heteroatom substitution. These design guidelines would be helpful in developing novel NIR dyes with better hole mobility for various optoelectronic applications. Furthermore, π-delocalization over the cross-conjugation concept opens a new pathway in the field of functional molecular devices to increase the charge conductance over several orders of magnitude with a significant reduction of destructive quantum interference at the molecular junction.

2.
Angew Chem Int Ed Engl ; 56(51): 16207-16211, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29110380

RESUMEN

The highly sensitive optical detection of oxygen including dissolved oxygen (DO) is of great interest in various applications. We devised a novel room-temperature-phosphorescence (RTP)-based oxygen detection platform by constructing core-shell nanoparticles with water-soluble polymethyloxazoline shells and oxygen-permeable polystyrene cores crosslinked with metal-free purely organic phosphors. The resulting nanoparticles show a very high sensitivity for DO with a limit of detection (LOD) of 60 nm and can be readily used for oxygen quantification in aqueous environments as well as the gaseous phase.

3.
Nanotechnology ; 27(40): 405704, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27581367

RESUMEN

The performance of carbon nanotube (CNT)-based devices strongly depends on the adhesion of CNTs to the substrate on which they were directly grown. We report on the bond strength of CNTs grown on a carbon fiber (T700SC Toray), measured via in situ pulling of individual CNTs inside a transmission electron microscope. The bond strength of an individual CNT, obtained from the measured pulling force and CNT cross-section, was very high (∼200 MPa), 8-10 times higher than that of an adhesion model assuming only van der Waals interactions (25 MPa), presumably due to carbon-carbon interactions between the CNT (its bottom atoms) and the carbon substrate.

4.
J Am Chem Soc ; 135(16): 6325-9, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23521108

RESUMEN

Developing metal-free organic phosphorescent materials is promising but challenging because achieving emissive triplet relaxation that outcompetes the vibrational loss of triplets, a key process to achieving phosphorescence, is difficult without heavy metal atoms. While recent studies reveal that bright room temperature phosphorescence can be realized in purely organic crystalline materials through directed halogen bonding, these organic phosphors still have limitations to practical applications due to the stringent requirement of high quality crystal formation. Here we report bright room temperature phosphorescence by embedding a purely organic phosphor into an amorphous glassy polymer matrix. Our study implies that the reduced beta (ß)-relaxation of isotactic PMMA most efficiently suppresses vibrational triplet decay and allows the embedded organic phosphors to achieve a bright 7.5% phosphorescence quantum yield. We also demonstrate a microfluidic device integrated with a novel temperature sensor based on the metal-free purely organic phosphors in the temperature-sensitive polymer matrix. This unique system has many advantages: (i) simple device structures without feeding additional temperature sensing agents, (ii) bright phosphorescence emission, (iii) a reversible thermal response, and (iv) tunable temperature sensing ranges by using different polymers.


Asunto(s)
Polímeros/química , Colorantes Fluorescentes , Mediciones Luminiscentes , Compuestos Orgánicos , Polímero Poliacetilénico , Polimetil Metacrilato , Poliinos , Temperatura
5.
Phys Chem Chem Phys ; 14(40): 14041-8, 2012 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22990211

RESUMEN

The formation of carbon nanotubes (CNTs) through precipitated carbons emerging from supersaturated metal catalysts is an established mechanism for their growth during the CVD process. Here, the CNT growth mode is determined by the interaction between the substrate and the catalyst nanoparticle, e.g., the tip-growth mode for the weak adhesion between them and the base-growth mode for the strong adhesion case. With microscopic evidence, this study reports another factor that governs the growth mode of CNTs on carbon-based substrates. Catalyst nanoparticles after only sputtering and annealing processes before the chemical vapor deposition (CVD) process are fully or partially wrapped with some graphitic layers, which are formed by carbons escaping from the carbon substrate. The formation of the wrapping graphitic layers is initiated by catalyst atoms diffusing into the carbon substrate during the catalyst sputtering process. The diffused catalyst atoms later coalesce into the nanoparticles, during which carbon atoms escape from the carbon substrate, forming the graphitic layers which wrap around the catalyst nanoparticles for energy minimization. Then, the carbon atoms generated from the catalytic reactions during the CVD process interact with the carbons in the graphitic layers wrapped around the catalyst nanoparticles, bringing about clear tip-growth of CNTs on carbon-based substrates and a stable interface (carbon-carbon bonding) between CNTs and carbon-based substrates.

6.
ACS Macro Lett ; 11(4): 428-433, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35575341

RESUMEN

Replica molding is one of the most common and low-cost methods for constructing microstructures for various applications, including dry adhesives, optics, tissue engineering, and strain sensors. However, replica molding provides only a single-height microstructure from a mold and master molds produced by an expensive photolithography process are required to prepare microstructures with different heights. Herein, we present a strategy to control the height of micropillars from the same mold by varying the cavity size of the micromold and the viscosity of the photocurable polyimide resin. The height of the constructed micropillar decreases in the case of small microcavities or high viscosity resin. In addition, the height of the micropillar arrays could be arbitrarily patterned by applying a masking technique. We believe that this cost-effective technique can be applied to metasurfaces for manipulation of electromagnetic signal or in biomedical applications including cell-culture and stem-cell differentiation.


Asunto(s)
Técnicas de Cultivo de Célula , Polímeros , Ingeniería de Tejidos , Viscosidad
7.
Polymers (Basel) ; 14(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35567042

RESUMEN

A new reactive urethane-silicone softener was developed to provide a soft touch to cotton knit fabrics with improved durability to washing and dimensional stability. The reactive urethane-silicone softener consisted of an amino silicone softener and a blocked isocyanate, which can crosslink and react with cellulose surfaces. The activated isocyanate from the blocked isocyanate reacted with the amino silicone softener by heat treatment at 150 °C for 30 min. The mechanical properties of the cotton knit fabrics treated with the urethane-silicone softener were evaluated using a Kawabata Evaluation System-Fabrics (KES-FB) system. The cotton knit fabrics treated with the urethane-silicone softener showed excellent elasticity, flexibility and shear recovery as well as excellent recovery against bending deformation, and soft and smooth surface characteristics with a small coefficient of friction that were maintained even after washing 20 times.

8.
RSC Adv ; 12(1): 346-354, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35424511

RESUMEN

Although there have been many studies addressing the dendrite growth issue of lithium (Li)-metal batteries (LMBs), the Li-metal anode has not yet been implemented in today's rechargeable batteries. There is a need to accelerate the practical use of LMBs by considering their cost-effectiveness, ecofriendliness, and scalability. Herein, a cost-effective and uniform protection layer was developed by simple heat treatment of a Post-it note. The carbonized Post-it protection layer, which consisted of electrochemically active carbon fibers and electrochemically inert CaCO3 particles, significantly contributed to stable plating and stripping behaviors. The resulting protected Li anode exhibited excellent electrochemical performance: extremely low polarization during cycling (<40 mV at a current density of 1 mA cm-2) and long lifespan (5000 cycles at 10 mA cm-2) of the symmetric cell, as well as excellent rate performance at 2C (125 mA h g-1) and long cyclability (cycling retention of 62.6% after 200 cycles) of the LiFePO4‖Li full cell. The paper-derived Li protection layer offer a facile and scalable approach to enhance LMB electrochemical performance.

9.
Biotechnol Lett ; 32(6): 877-82, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20213523

RESUMEN

The three dimensional (3-D) poly(trimethylenecarbonate-co-epsilon-caprolactone)-block-poly(p-dioxanone) scaffold was made using a wet electrospinning method and its application as a tissue engineered matrix was evaluated for bone regeneration. The scaffold was highly porous (90%) and interconnected among pores. Under scanning electron microscopy, the cells of the center of the scaffold showed healthy well attached shape even at 4 days after seeding. The osteoblastic MC3T3-E1 cells proliferated 1.2 times faster at 4 day, 1.5 times faster at 7 days after seeding as compared with the control in the scaffold (P < 0.05). The activity of alkaline phosphatase, a bone formation marker, of cells seeded in the scaffold was nearly four times faster compared to control 28 days after seeding (P < 0.05). Taken together, newly developed 3-D poly(trimethylenecarbonate-co-epsilon-caprolactone)-block-poly(p-dioxanone) scaffold is a promising candidate for bone regeneration.


Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Dioxanos , Lactonas , Poliésteres , Polímeros , Ingeniería de Tejidos/métodos , Fosfatasa Alcalina/análisis , Adhesión Celular , División Celular , Humanos , Microscopía Electrónica de Rastreo , Osteocitos/enzimología , Osteocitos/fisiología , Osteocitos/ultraestructura , Porosidad
10.
ACS Appl Mater Interfaces ; 10(23): 19554-19563, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29790734

RESUMEN

Metal nanoparticle-containing porous organic polymers have gained great interest in chemical and pharmaceutical applications owing to their high reactivity and good recyclability. In the present work, a palladium nanoparticle-decorated triazine-urea-based porous organic polymer (Pd@TU-POP) was designed and synthesized using 1,3-bis(4-aminophenyl)urea with cyanuric chloride and palladium acetate. The porous structure and physicochemical properties of the electrode material Pd@TU-POP were observed using a range of standard techniques. The Pd@TU-POP material on the electrode surface showed superior sensing ability for rutin (RT) because the Pd dispersion facilitated the electrocatalytic performance of TU-POP by reducing the overpotential of RT oxidation dramatically and improving the stability significantly. Furthermore, TU-POP provides excellent structural features for loading Pd nanoparticles, and the resulting Pd@TU-POP exhibited enhanced electron transfer and outstanding sensing capability in a linear range between 2 and 200 pM having a low detection value of 5.92 × 10-12 M (S/N = 3). The abundant porous structure of Pd@TU-POP not only provides electron transport channels for RT diffusion but also offers a facile route for quantification sensing of RT with satisfactory recoveries in aqueous electrolyte containing human plasma and red wine. These data reveal that the synthetic Pd@TU-POP is an excellent potential platform for the detection of RT in biological samples.


Asunto(s)
Triazinas/química , Técnicas Electroquímicas , Humanos , Paladio , Polímeros , Rutina , Urea
11.
J Nanosci Nanotechnol ; 7(11): 3888-91, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18047081

RESUMEN

We present a simple and mass-producible method of incorporating silver nanoparticles on the surface of electrospun silk non-woven membranes for the fabrication of antimicrobial wound dressings. Nanofibrous silk membranes with fiber diameters of 460 +/- 40 nm were electrospun from an aqueous Bombyx mori fibroin solution. The electrospun membranes incorporating silver nanoparticles were prepared by dipping the membranes in aqueous silver nitrate (AgNO3) solution (0.5 or 1.0 wt%) followed by photoreduction. Field emission scanning and transmission electron microscopy showed that silver nanoparticles were generated on the electrospun silk fibroin nanofibers as well as inside them. The interaction between the silver nanoparticles and amide groups in the silk fibroin molecules was characterized using X-ray photoelectron spectroscopy.


Asunto(s)
Materiales Biocompatibles/química , Electroquímica/métodos , Fibroínas/química , Fibroínas/ultraestructura , Nanoestructuras/química , Nanoestructuras/ultraestructura , Plata/química , Animales , Vendajes , Bombyx/química , Cristalización/métodos , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Nanotecnología/instrumentación , Nanotecnología/métodos , Tamaño de la Partícula , Rotación , Propiedades de Superficie
12.
ChemSusChem ; 10(8): 1675-1682, 2017 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-28058792

RESUMEN

Future electronics applications such as wearable electronics depend on the successful construction of energy-storage devices with superior flexibility and high electrochemical performance. However, these prerequisites are challenging to combine: External forces often cause performance degradation, whereas the trade-off between the required nanostructures for strength and electrochemical performance only results in diminished energy storage. Herein, a flexible supercapacitor based on tannic acid (TA) and carbon nanotubes (CNTs) with a unique nanostructure is presented. TA was self-assembled on the surface of the CNTs by metal-phenolic coordination bonds, which provides the hybrid film with both high strength and high pseudocapacitance. Besides 17-fold increased mechanical strength of the final composite, the hybrid film simultaneously exhibits excellent flexibility and volumetric capacitance.


Asunto(s)
Carbono/química , Suministros de Energía Eléctrica , Metales/química , Nanocompuestos/química , Fenoles/química , Electroquímica , Microscopía Electrónica de Transmisión
13.
Carbohydr Res ; 340(15): 2376-91, 2005 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-16153620

RESUMEN

Crystalline structures of cellulose (named as Cell 1), NaOH-treated cellulose (Cell 2), and subsequent CO2-treated cellulose (Cell 2-C) were analyzed by wide-angle X-ray diffraction and FTIR spectroscopy. Transformation from cellulose I to cellulose II was observed by X-ray diffraction for Cell 2 treated with 15-20 wt% NaOH. Subsequent treatment with CO2 also transformed the Cell 2-C treated with 5-10 wt% NaOH. Many of the FTIR bands including 2901, 1431, 1282, 1236, 1202, 1165, 1032, and 897 cm(-1) were shifted to higher wave number (by 2-13 cm(-1)). However, the bands at 3352, 1373, and 983 cm(-1) were shifted to lower wave number (by 3-95 cm(-1)). In contrast to the bands at 1337, 1114, and 1058 cm(-1), the absorbances measured at 1263, 993, 897, and 668 cm(-1) were increased. The FTIR spectra of hydrogen-bonded OH stretching vibrations at around 3352 cm(-1) were resolved into three bands for cellulose I and four bands for cellulose II, assuming that all the vibration modes follow Gaussian distribution. The bands of 1 (3518 cm(-1)), 2 (3349 cm(-1)), and 3 (3195 cm(-1)) were related to the sum of valence vibration of an H-bonded OH group and an intramolecular hydrogen bond of 2-OH ...O-6, intramolecular hydrogen bond of 3-OH...O-5 and the intermolecular hydrogen bond of 6-O...HO-3', respectively. Compared with the bands of cellulose I, a new band of 4 (3115 cm(-1)) related to intermolecular hydrogen bond of 2-OH...O-2' and/or intermolecular hydrogen bond of 6-OH...O-2' in cellulose II appeared. The crystallinity index (CI) was obtained by X-ray diffraction [CI(XD)] and FTIR spectroscopy [CI(IR)]. Including absorbance ratios such as A1431,1419/A897,894 and A1263/A1202,1200, the CI(IR) was evaluated by the absorbance ratios using all the characteristic absorbances of cellulose. The CI(XD) was calculated by the method of Jayme and Knolle. In addition, X-ray diffraction curves, with and without amorphous halo correction, were resolved into portions of cellulose I and cellulose II lattice. From the ratio of the peak area, that is, peak area of cellulose I (or cellulose II)/total peak area, CI(XD) were divided into CI(XD-CI) for cellulose I and CI(XD-CII) for cellulose II. The correlation between CI(XD-CI) (or CI(XD-CII)) and CI(IR) was evaluated, and the bands at 2901 (2802), 1373 (1376), 897 (894), 1263, 668 cm(-1) were good for the internal standard (or denominator) of CI(IR), which increased the correlation coefficient. Both fraction of the absorbances showing peak shift were assigned as the alternate components of CI(IR). The crystallite size was decreased to constant value for Cell 2 treated at >or= 15 wt% NaOH. The crystallite size of Cell 2-C (cellulose II) was smaller than that of Cell 2 (cellulose I) treated at 5-10 wt% NaOH. But the crystallite size of Cell 2-C (cellulose II) was larger than that of Cell 2 (cellulose II) treated at 15-20 wt% NaOH.


Asunto(s)
Dióxido de Carbono/química , Celulosa/química , Hidróxido de Sodio/química , Cristalografía , Enlace de Hidrógeno , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
14.
ACS Appl Mater Interfaces ; 7(9): 5274-80, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25700018

RESUMEN

Poly(styrene-r-3-methacryloxypropyltrimethoxysilane) (PSMPTS) copolymers were synthesized by the free radical polymerization of styrene and 3-methacryloxypropyltrimethoxysilane (MPTS) for use as surface modifiers. PSMPTS copolymers were spun-cast onto a hydrophilic SiO2 layer and were then annealed at 150 °C in ambient air. The polystyrene (PS)-based copolymer, with a molecular weight of 32 700 g mol(-1) and approximately 30 MPTS coupling sites, was easily grafted onto the SiO2 surface after annealing periods longer than 1 min, yielding a physicochemically stable layer. On the untreated and polymer-treated dielectrics, spin-casting of an ultrasonicated poly(3-hexyl thiophene) (P3HT) solution yielded highly interconnected crystal nanofibrils of P3HT. The resulting organic field-effect transistors (OFETs) showed similar mobility values of 0.01-0.012 cm(2) V(-1) s(-1) for all surfaces. However, the threshold voltage (Vth) drastically decreased from +13 (for bare SiO2) to 0 V by grafting the PSMPTS copolymers to the SiO2 surface. In particular, the interfacial charge traps that affect Vth were minimized by grafting the 11 mol % MPTS-loaded copolymer to the polar dielectric surface. We believe that this ambient-air-processable silane-coupled copolymer can be used as a solution-based surface modifier for continuous, large-scale OFET fabrication.

15.
Nat Commun ; 6: 8947, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26626796

RESUMEN

Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin-orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels-Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage.

16.
Int J Biol Macromol ; 34(4): 249-56, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15374681

RESUMEN

Electrospinning of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in chloroform was investigated to develop non-woven biodegradable nanofibrous structures for tissue engineering. Ultrafine PHBV fibers were obtained by electrospinning of 20 wt.% PHBV solution in chloroform and the resulting fiber diameters were in the range of 1.0-4.0 microm. When small amounts of benzyl trialkylammonium chlorides were added to the PHBV solution, the average diameter was decreased to 1.0 microm and the fibers were amounted in a straight shape. Conductivity of the PHBV solution was a major parameter affecting the morphology and diameter of the electrospun PHBV fibers. PHBV non-woven structures electrospun with salt exhibited a higher degradation rate than those prepared without salt probably due to the increase of surface area of PHBV fibers.


Asunto(s)
Poliésteres/química , Poliésteres/farmacología , Cloruro de Amonio/química , Materiales Biocompatibles , Cloroformo , Relación Dosis-Respuesta a Droga , Microscopía Electrónica de Rastreo , Modelos Químicos , Nanotecnología , Compuestos de Amonio Cuaternario/química , Sales (Química)/química , Factores de Tiempo
17.
J Nanosci Nanotechnol ; 14(12): 9232-6, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25971042

RESUMEN

Nanofibrous polyacrylonitrile (PAN) membranes as nonwoven separators were prepared by electrospinning followed by a thermal treatment to improve their physical properties. The effect of the thermal treatment on the physical and electrochemical properties of the PAN separators was investigated. With increasing heating time, the PAN nanofiber separators became denser with decreasing size of fully interconnected pores. The tensile strength and modulus of the nanofibrous PAN separators varied with the heating temperature and heating time. The maximum tensile strength and modulus were obtained at a heating temperature and heating time of 170 degrees C and 5 h, respectively. The cell assembled with the PAN separator prepared at 170 degrees C for 5 h exhibited high capacity retention and stable cycle performance, even at higher discharge current densities.

18.
ACS Appl Mater Interfaces ; 5(21): 11115-22, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24117056

RESUMEN

Hierarchical micro/nanosurfaces with nanoscale roughness on microscale uneven substrates have been the subject of much recent research interest because of phenomena such as superhydrophobicity. However, an understanding of the effect of the difference in the scale of the hierarchical entities, i.e., nanoscale roughness on microscale uneven substrates as opposed to nanoscale roughness on (a larger) nanoscale uneven surface, is still lacking. In this study, we investigated the effect of the difference in scale between the nano- and microscale features. We fabricated carbon nanotube-grafted carbon nanofibers (CNFs) by dispersing a catalyst precursor in poly (acrylonitrile) (PAN) solution, electrospinning the PAN/catalyst precursor solution, carbonization of electrospun PAN nanofibers, and direct growth of carbon nanotubes (CNTs) on the CNFs. We investigated the relationships between the catalyst concentrations, the size of catalyst nanoparticles on CNFs, and the sizes of CNFs and CNTs. Interestingly, the hydrophobic behavior of micro/nano and nano/nano hierarchical surfaces with water droplets was similar; however a significant difference in the water condensation behavior was observed. Water condensed into smaller droplets on the nano/nano hierarchical surface, causing it to dry much faster.

19.
ACS Appl Mater Interfaces ; 4(4): 2250-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22480444

RESUMEN

This study reports on the main cause of the reduced tensile strength of carbon fibers (CFs) by investigating the microstructural changes in the CFs that are undergoing mainly two processes: catalyst nanoparticle formation and chemical vapor deposition (CVD). Interestingly, the two processes oppositely influenced the tensile strength of the CFs: the former negatively and the latter positively. The catalysts coating and nanoparticle formation degraded the CF surface by inducing amorphous carbons and severing graphitic layers, while those defects were healed by both the injected carbons and interfaced CNTs during the CVD process. The revealed degradation and healing mechanisms can serve as a fundamental engineering basis for exploring optimized processes in the manufacturing of hierarchical reinforcements without sacrificing the tensile strength of the substrate CFs.

20.
Biomacromolecules ; 5(1): 197-201, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14715026

RESUMEN

Ultrafine oxidized cellulose (OC) mats were prepared by oxidation of ultrafine cellulose mats produced by electrospinning and subsequent deacetylation of cellulose acetate for potential applications in nonwoven adhesion barriers. When ultrafine cellulose mats were oxidized with a mixture of HNO3/H3PO4 - NaNO2 (2/1/1.4 v/v/wt %), their ultrafine mat structure remained unchanged. The yield and carboxyl content of OC mats were 86.7% and 16.8%, respectively. OC showed lower crystallinity than cellulose because the oxidation of cellulose proceeded via disruption of hydrogen bonds between cellulose chains. The swelling behaviors of ultrafine OC mats were dependent on the type of swelling solution. In a physiological salt solution, their degree of swelling was approximately 230%.


Asunto(s)
Celulosa/síntesis química , Absorción , Materiales Biocompatibles/síntesis química , Enlace de Hidrógeno , Membranas Artificiales , Oxidación-Reducción , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA