Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chembiochem ; 23(19): e202200276, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35715931

RESUMEN

Detergents are widely used for membrane protein structural study. Many recently developed detergents contain multiple tail and head groups, which are typically connected via a small and branched linker. Due to their inherent compact structures, with small inter-alkyl chain distances, these detergents form micelles with high alkyl chain density in the interiors, a feature favorably associated with membrane-protein stability. A recent study on tandem triazine maltosides (TZMs) revealed a distinct trend; despite possession of an apparently large inter-alkyl chain distance, the TZM-Es were highly effective at stabilizing membrane proteins. Thanks to the incorporation of a flexible spacer between the two triazine rings in the linker region, these detergents are prone to folding into a compact architecture in micellar environments instead of adopting an extended conformation. Detergent foldability represents a new concept of novel detergent design with significant potential for future detergent development.


Asunto(s)
Detergentes , Proteínas de la Membrana , Detergentes/química , Proteínas de la Membrana/química , Micelas , Estabilidad Proteica , Triazinas
2.
Chembiochem ; 23(7): e202200027, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35129249

RESUMEN

Integral membrane proteins pose considerable challenges to high resolution structural analysis. Maintaining membrane proteins in their native state during protein isolation is essential for structural study of these bio-macromolecules. Detergents are the most commonly used amphiphilic compounds for stabilizing membrane proteins in solution outside a lipid bilayer. We previously introduced a glyco-diosgenin (GDN) detergent that was shown to be highly effective at stabilizing a wide range of membrane proteins. This steroidal detergent has additionally gained attention due to its compatibility with membrane protein structure study via cryo-EM. However, synthetic inconvenience limits widespread use of GDN in membrane protein study. To improve its synthetic accessibility and to further enhance detergent efficacy for protein stabilization, we designed a new class of glyco-steroid-based detergents using three steroid units: cholestanol, cholesterol and diosgenin. These new detergents were efficiently prepared and showed marked efficacy for protein stabilization in evaluation with a few model membrane proteins including two G protein-coupled receptors. Some new agents were not only superior to a gold standard detergent, DDM (n-dodecyl-ß-d-maltoside), but were also more effective than the original GDN at preserving protein integrity long term. These agents represent valuable alternatives to GDN, and are likely to facilitate structural determination of challenging membrane proteins.


Asunto(s)
Detergentes , Proteínas de la Membrana , Detergentes/química , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Estabilidad Proteica , Esteroides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA