Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 604(7907): 749-756, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35444283

RESUMEN

Amplification of the CCNE1 locus on chromosome 19q12 is prevalent in multiple tumour types, particularly in high-grade serous ovarian cancer, uterine tumours and gastro-oesophageal cancers, where high cyclin E levels are associated with genome instability, whole-genome doubling and resistance to cytotoxic and targeted therapies1-4. To uncover therapeutic targets for tumours with CCNE1 amplification, we undertook genome-scale CRISPR-Cas9-based synthetic lethality screens in cellular models of CCNE1 amplification. Here we report that increasing CCNE1 dosage engenders a vulnerability to the inhibition of the PKMYT1 kinase, a negative regulator of CDK1. To inhibit PKMYT1, we developed RP-6306, an orally bioavailable and selective inhibitor that shows single-agent activity and durable tumour regressions when combined with gemcitabine in models of CCNE1 amplification. RP-6306 treatment causes unscheduled activation of CDK1 selectively in CCNE1-overexpressing cells, promoting early mitosis in cells undergoing DNA synthesis. CCNE1 overexpression disrupts CDK1 homeostasis at least in part through an early activation of the MMB-FOXM1 mitotic transcriptional program. We conclude that PKMYT1 inhibition is a promising therapeutic strategy for CCNE1-amplified cancers.


Asunto(s)
Ciclina E , Proteínas de la Membrana , Neoplasias Ováricas , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Proteína Quinasa CDC2 , Ciclina E/genética , Femenino , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Neoplasias/genética , Neoplasias Ováricas/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Mutaciones Letales Sintéticas
2.
Mol Cell ; 78(6): 1152-1165.e8, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32516598

RESUMEN

The APEX2 gene encodes APE2, a nuclease related to APE1, the apurinic/apyrimidinic endonuclease acting in base excision repair. Loss of APE2 is lethal in cells with mutated BRCA1 or BRCA2, making APE2 a prime target for homologous recombination-defective cancers. However, because the function of APE2 in DNA repair is poorly understood, it is unclear why BRCA-deficient cells require APE2 for viability. Here we present the genetic interaction profiles of APE2, APE1, and TDP1 deficiency coupled to biochemical and structural dissection of APE2. We conclude that the main role of APE2 is to reverse blocked 3' DNA ends, problematic lesions that preclude DNA synthesis. Our work also suggests that TOP1 processing of genomic ribonucleotides is the main source of 3'-blocking lesions relevant to APEX2-BRCA1/2 synthetic lethality. The exquisite sensitivity of BRCA-deficient cells to 3' blocks indicates that they represent a tractable vulnerability in homologous recombination-deficient tumor cells.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Endonucleasas/metabolismo , Enzimas Multifuncionales/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/genética , Línea Celular , ADN/metabolismo , Daño del ADN , Reparación del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Endonucleasas/genética , Genes BRCA1/fisiología , Humanos , Enzimas Multifuncionales/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo
3.
Mol Cell ; 61(3): 405-418, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26774285

RESUMEN

DNA double-strand break repair by homologous recombination is initiated by the formation of 3' single-stranded DNA (ssDNA) overhangs by a process termed end resection. Although much focus has been given to the decision to initiate resection, little is known of the mechanisms that regulate the ongoing formation of ssDNA tails. Here we report that DNA helicase B (HELB) underpins a feedback inhibition mechanism that curtails resection. HELB is recruited to ssDNA by interacting with RPA and uses its 5'-3' ssDNA translocase activity to inhibit EXO1 and BLM-DNA2, the nucleases catalyzing resection. HELB acts independently of 53BP1 and is exported from the nucleus as cells approach S phase, concomitant with the upregulation of resection. Consistent with its role as a resection antagonist, loss of HELB results in PARP inhibitor resistance in BRCA1-deficient tumor cells. We conclude that mammalian DNA end resection triggers its own inhibition via the recruitment of HELB.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Helicasas/metabolismo , Neoplasias Mamarias Experimentales/enzimología , Animales , Proteína BRCA1/genética , ADN Helicasas/deficiencia , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Retroalimentación Fisiológica , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Interferencia de ARN , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Fase S , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/genética
4.
Mol Cell ; 49(5): 872-83, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23333306

RESUMEN

DNA double-strand break (DSB) repair pathway choice is governed by the opposing activities of 53BP1 and BRCA1. 53BP1 stimulates nonhomologous end joining (NHEJ), whereas BRCA1 promotes end resection and homologous recombination (HR). Here we show that 53BP1 is an inhibitor of BRCA1 accumulation at DSB sites, specifically in the G1 phase of the cell cycle. ATM-dependent phosphorylation of 53BP1 physically recruits RIF1 to DSB sites, and we identify RIF1 as the critical effector of 53BP1 during DSB repair. Remarkably, RIF1 accumulation at DSB sites is strongly antagonized by BRCA1 and its interacting partner CtIP. Lastly, we show that depletion of RIF1 is able to restore end resection and RAD51 loading in BRCA1-depleted cells. This work therefore identifies a cell cycle-regulated circuit, underpinned by RIF1 and BRCA1, that governs DSB repair pathway choice to ensure that NHEJ dominates in G1 and HR is favored from S phase onward.


Asunto(s)
Proteína BRCA1/genética , Proteínas Portadoras/genética , Ciclo Celular/genética , Reparación del ADN , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Proteínas de Unión a Telómeros/genética , Proteína BRCA1/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Reparación del ADN por Unión de Extremidades/genética , Endodesoxirribonucleasas , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fase S , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
5.
Mol Cell ; 40(4): 619-31, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21055983

RESUMEN

Genome integrity is jeopardized each time DNA replication forks stall or collapse. Here we report the identification of a complex composed of MMS22L (C6ORF167) and TONSL (NFKBIL2) that participates in the recovery from replication stress. MMS22L and TONSL are homologous to yeast Mms22 and plant Tonsoku/Brushy1, respectively. MMS22L-TONSL accumulates at regions of ssDNA associated with distressed replication forks or at processed DNA breaks, and its depletion results in high levels of endogenous DNA double-strand breaks caused by an inability to complete DNA synthesis after replication fork collapse. Moreover, cells depleted of MMS22L are highly sensitive to camptothecin, a topoisomerase I poison that impairs DNA replication progression. Finally, MMS22L and TONSL are necessary for the efficient formation of RAD51 foci after DNA damage, and their depletion impairs homologous recombination. These results indicate that MMS22L and TONSL are genome caretakers that stimulate the recombination-dependent repair of stalled or collapsed replication forks.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Recombinación Genética , Estrés Fisiológico , Supervivencia Celular , Roturas del ADN de Doble Cadena , Células HeLa , Humanos , FN-kappa B/química , Unión Proteica , Fase S , Moldes Genéticos
6.
Mol Syst Biol ; 9: 696, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24104479

RESUMEN

Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large-scale sequencing efforts. Using genome-scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co-culture competition assays to generate a high-confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non-isogenic cancer cell lines. For example, the PTEN(-/-) DiE genes reveal a signature that can preferentially classify PTEN-dependent genotypes across a series of non-isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model.


Asunto(s)
Neoplasias de la Mama/genética , Epistasis Genética , Genes Esenciales , Proteínas de Neoplasias/genética , Neoplasias Ováricas/genética , Fosfohidrolasa PTEN/genética , Neoplasias Pancreáticas/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Técnicas de Cocultivo , Femenino , Redes Reguladoras de Genes , Genoma Humano , Humanos , Mutación , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Fosfohidrolasa PTEN/deficiencia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
7.
Signal Transduct Target Ther ; 7(1): 102, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35414135

RESUMEN

The chromatin-based rule governing the selection and activation of replication origins remains to be elucidated. It is believed that DNA replication initiates from open chromatin domains; thus, replication origins reside in open and active chromatin. However, we report here that lysine-specific demethylase 1 (LSD1), which biochemically catalyzes H3K4me1/2 demethylation favoring chromatin condensation, interacts with the DNA replication machinery in human cells. We find that LSD1 level peaks in early S phase, when it is required for DNA replication by facilitating origin firing in euchromatic regions. Indeed, euchromatic zones enriched in H3K4me2 are the preferred sites for the pre-replicative complex (pre-RC) binding. Remarkably, LSD1 deficiency leads to a genome-wide switch of replication from early to late. We show that LSD1-engaged DNA replication is mechanistically linked to the loading of TopBP1-Interacting Checkpoint and Replication Regulator (TICRR) onto the pre-RC and subsequent recruitment of CDC45 during origin firing. Together, these results reveal an unexpected role for LSD1 in euchromatic origin firing and replication timing, highlighting the importance of epigenetic regulation in the activation of replication origins. As selective inhibitors of LSD1 are being exploited as potential cancer therapeutics, our study supports the importance of leveraging an appropriate level of LSD1 to curb the side effects of anti-LSD1 therapy.


Asunto(s)
Epigénesis Genética , Origen de Réplica , Proteínas de Ciclo Celular/genética , Núcleo Celular , Cromatina/genética , Histona Demetilasas/genética , Humanos , Origen de Réplica/genética
8.
Cell Rep ; 40(2): 111081, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35830811

RESUMEN

Combinations of ataxia telangiectasia- and Rad3-related kinase inhibitors (ATRis) and poly(ADP-ribose) polymerase inhibitors (PARPis) synergistically kill tumor cells through modulation of complementary DNA repair pathways, but their tolerability is limited by hematological toxicities. To address this, we performed a genome-wide CRISPR-Cas9 screen to identify genetic alterations that hypersensitize cells to a combination of the ATRi RP-3500 with PARPi, including deficiency in RNase H2, RAD51 paralog mutations, or the "alternative lengthening of telomeres" telomere maintenance mechanism. We show that RP-3500 and PARPi combinations kill cells carrying these genetic alterations at doses sub-therapeutic as single agents. We also demonstrate the mechanism of combination hypersensitivity in RNase H2-deficient cells, where we observe an irreversible replication catastrophe, allowing us to design a highly efficacious and tolerable in vivo dosing schedule. We present a comprehensive dataset to inform development of ATRi and PARPi combinations and an experimental framework applicable to other drug combination strategies.


Asunto(s)
Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Ribonucleasas
9.
Mol Cancer Ther ; 21(2): 245-256, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34911817

RESUMEN

Ataxia telangiectasia and Rad3-related (ATR) kinase protects genome integrity during DNA replication. RP-3500 is a novel, orally bioavailable clinical-stage ATR kinase inhibitor (NCT04497116). RP-3500 is highly potent with IC50 values of 1.0 and 0.33 nmol/L in biochemical and cell-based assays, respectively. RP-3500 is highly selective for ATR with 30-fold selectivity over mammalian target of rapamycin (mTOR) and more than 2,000-fold selectivity over ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), and phosphatidylinositol 3-kinase alpha (PI3Kα) kinases. In vivo, RP-3500 treatment results in potent single-agent efficacy and/or tumor regression in multiple xenograft models at minimum effective doses (MED) of 5 to 7 mg/kg once daily. Pharmacodynamic assessments validate target engagement, with dose-proportional tumor inhibition of phosphorylated checkpoint kinase 1 (pCHK1) (IC80 = 18.6 nmol/L) and induction of phosphorylated H2A.X variant histone (γH2AX), phosphorylated DNA-PK catalytic subunit (pDNA-PKcs), and phosphorylated KRAB-associated protein 1 (pKAP1). RP-3500 exposure at MED indicates that circulating free plasma levels above the in vivo tumor IC80 for 10 to 12 hours are sufficient for efficacy on a continuous schedule. However, short-duration intermittent (weekly 3 days on/4 days off) dosing schedules as monotherapy or given concomitantly with reduced doses of olaparib or niraparib, maximize tumor growth inhibition while minimizing the impact on red blood cell depletion, emphasizing the reversible nature of erythroid toxicity with RP-3500 and demonstrating superior efficacy compared with sequential treatment. These results provide a strong preclinical rationale to support ongoing clinical investigation of the novel ATR inhibitor, RP-3500, on an intermittent schedule as a monotherapy and in combination with PARP inhibitors as a potential means of maximizing clinical benefit.


Asunto(s)
Ataxia Telangiectasia , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/metabolismo , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
10.
Nat Cancer ; 2(12): 1357-1371, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35121901

RESUMEN

BRCA1/2-mutated cancer cells adapt to the genome instability caused by their deficiency in homologous recombination (HR). Identification of these adaptive mechanisms may provide therapeutic strategies to target tumors caused by the loss of these genes. In the present study, we report genome-scale CRISPR-Cas9 synthetic lethality screens in isogenic pairs of BRCA1- and BRCA2-deficient cells and identify CIP2A as an essential gene in BRCA1- and BRCA2-mutated cells. CIP2A is cytoplasmic in interphase but, in mitosis, accumulates at DNA lesions as part of a complex with TOPBP1, a multifunctional genome stability factor. Unlike PARP inhibition, CIP2A deficiency does not cause accumulation of replication-associated DNA lesions that require HR for their repair. In BRCA-deficient cells, the CIP2A-TOPBP1 complex prevents lethal mis-segregation of acentric chromosomes that arises from impaired DNA synthesis. Finally, physical disruption of the CIP2A-TOPBP1 complex is highly deleterious in BRCA-deficient tumors, indicating that CIP2A represents an attractive synthetic lethal therapeutic target for BRCA1- and BRCA2-mutated cancers.


Asunto(s)
Neoplasias , Mutaciones Letales Sintéticas , Proteínas Portadoras/genética , Inestabilidad Cromosómica , ADN , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica/genética , Recombinación Homóloga , Humanos , Proteínas Nucleares/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-19358893

RESUMEN

In this study, we examined the effect of concurrent low concentrations of sodium arsenite and mild heat shock temperatures on hsp30 and hsp70 gene expression in Xenopus A6 kidney epithelial cells. RNA blot hybridization and immunoblot analysis revealed that exposure of A6 cells to 1-10 microM sodium arsenite at a mild heat shock temperature of 30 degrees C enhanced hsp30 and hsp70 gene expression to a much greater extent than found with either stress individually. In cells treated simultaneously with 10 microM sodium arsenite and different heat shock temperatures, enhanced accumulation of HSP30 and HSP70 protein was first detected at 26 degrees C with larger responses at 28 and 30 degrees C. HSF1 activity was involved in combined stress-induced hsp gene expression since the HSF1 activation inhibitor, KNK437, inhibited HSP30 and HSP70 accumulation. Immunocytochemical analysis revealed that HSP30 was present in a granular pattern primarily in the cytoplasm in cells treated simultaneously with both stresses. Finally, prior exposure of A6 cells to concurrent sodium arsenite (10 microM) and heat shock (30 degrees C) treatment conferred thermotolerance since it protected them against a subsequent thermal challenge (37 degrees C). Acquired thermotolerance was not observed with cells treated with the two mild stresses individually.


Asunto(s)
Adaptación Fisiológica , Arsenitos/farmacología , Proteínas del Choque Térmico HSP30/genética , Proteínas HSP70 de Choque Térmico/genética , Calor , Riñón/efectos de los fármacos , Compuestos de Sodio/farmacología , Animales , Northern Blotting , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Inmunohistoquímica , Riñón/citología , Riñón/metabolismo , Riñón/fisiología , Microscopía Confocal , Xenopus
12.
Cell Stress Chaperones ; 15(3): 323-34, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19838833

RESUMEN

Previous studies have shown that inhibiting the activity of the proteasome leads to the accumulation of damaged or unfolded proteins within the cell. In this study, we report that proteasome inhibitors, lactacystin and carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132), induced the accumulation of ubiquitinated proteins as well as a dose- and time-dependent increase in the relative levels of heat shock protein (HSP)30 and HSP70 and their respective mRNAs in Xenopus laevis A6 kidney epithelial cells. In A6 cells recovering from MG132 exposure, HSP30 and HSP70 levels were still elevated after 24 h but decreased substantially after 48 h. The activation of heat shock factor 1 (HSF1) may be involved in MG132-induced hsp gene expression in A6 cells since KNK437, a HSF1 inhibitor, repressed the accumulation of HSP30 and HSP70. Exposing A6 cells to simultaneous MG132 and mild heat shock enhanced the accumulation of HSP30 and HSP70 to a much greater extent than with each stressor alone. Immunocytochemical studies determined that HSP30 was localized primarily in the cytoplasm of lactacystin- or MG132-treated cells. In some cells treated with higher concentrations of MG132 or lactacystin, we observed in the cortical cytoplasm (1) relatively large HSP30 staining structures, (2) colocalization of actin and HSP30, and (3) cytoplasmic areas that were devoid of HSP30. Lastly, MG132 treatment of A6 cells conferred a state of thermotolerance such that they were able to survive a subsequent thermal challenge.


Asunto(s)
Regulación de la Expresión Génica , Proteínas del Choque Térmico HSP30 , Proteínas HSP70 de Choque Térmico , Inhibidores de Proteasoma , Temperatura , Xenopus laevis , Acetilcisteína/análogos & derivados , Acetilcisteína/metabolismo , Animales , Línea Celular , Inhibidores de Cisteína Proteinasa/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/citología , Células Epiteliales/fisiología , Proteínas del Choque Térmico HSP30/genética , Proteínas del Choque Térmico HSP30/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico , Humanos , Leupeptinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA