Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 134(6): 635-658, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484029

RESUMEN

Energetic demand and nutrient supply fluctuate as a function of time-of-day, in alignment with sleep-wake and fasting-feeding cycles. These daily rhythms are mirrored by 24-hour oscillations in numerous cardiovascular functional parameters, including blood pressure, heart rate, and myocardial contractility. It is, therefore, not surprising that metabolic processes also fluctuate over the course of the day, to ensure temporal needs for ATP, building blocks, and metabolism-based signaling molecules are met. What has become increasingly clear is that in addition to classic signal-response coupling (termed reactionary mechanisms), cardiovascular-relevant cells use autonomous circadian clocks to temporally orchestrate metabolic pathways in preparation for predicted stimuli/stresses (termed anticipatory mechanisms). Here, we review current knowledge regarding circadian regulation of metabolism, how metabolic rhythms are synchronized with cardiovascular function, and whether circadian misalignment/disruption of metabolic processes contribute toward the pathogenesis of cardiovascular disease.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Corazón , Relojes Circadianos/fisiología , Sueño/fisiología , Miocardio/metabolismo
2.
Circ Res ; 134(6): 770-790, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484031

RESUMEN

Time-of-day significantly influences the severity and incidence of stroke. Evidence has emerged not only for circadian governance over stroke risk factors, but also for important determinants of clinical outcome. In this review, we provide a comprehensive overview of the interplay between chronobiology and cerebrovascular disease. We discuss circadian regulation of pathophysiological mechanisms underlying stroke onset or tolerance as well as in vascular dementia. This includes cell death mechanisms, metabolism, mitochondrial function, and inflammation/immunity. Furthermore, we present clinical evidence supporting the link between disrupted circadian rhythms and increased susceptibility to stroke and dementia. We propose that circadian regulation of biochemical and physiological pathways in the brain increase susceptibility to damage after stroke in sleep and attenuate treatment effectiveness during the active phase. This review underscores the importance of considering circadian biology for understanding the pathology and treatment choice for stroke and vascular dementia and speculates that considering a patient's chronotype may be an important factor in developing precision treatment following stroke.


Asunto(s)
Relojes Circadianos , Demencia Vascular , Accidente Cerebrovascular , Humanos , Ritmo Circadiano , Sueño/fisiología , Factores de Riesgo , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/terapia , Relojes Circadianos/fisiología
3.
J Mol Cell Cardiol ; 186: 31-44, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979443

RESUMEN

Ischemia/reperfusion (I/R) injury after revascularization contributes ∼50% of infarct size and causes heart failure, for which no established clinical treatment exists. ß-hydroxybutyrate (ß-OHB), which serves as both an energy source and a signaling molecule, has recently been reported to be cardioprotective when administered immediately before I/R and continuously after reperfusion. This study aims to determine whether administering ß-OHB at the time of reperfusion with a single dose can alleviate I/R injury and, if so, to define the mechanisms involved. We found plasma ß-OHB levels were elevated during ischemia in STEMI patients, albeit not to myocardial protection level, and decreased after revascularization. In mice, compared with normal saline, ß-OHB administrated at reperfusion reduced infarct size (by 50%) and preserved cardiac function, as well as activated autophagy and preserved mtDNA levels in the border zone. Our treatment with one dose ß-OHB reached a level achievable with fasting and strenuous physical activity. In neonatal rat ventricular myocytes (NRVMs) subjected to I/R, ß-OHB at physiologic level reduced cell death, increased autophagy, preserved mitochondrial mass, function, and membrane potential, in addition to attenuating reactive oxygen species (ROS) levels. ATG7 knockdown/knockout abolished the protective effects of ß-OHB observed both in vitro and in vivo. Mechanistically, ß-OHB's cardioprotective effects were associated with inhibition of mTOR signaling. In conclusion, ß-OHB, when administered at reperfusion, reduces infarct size and maintains mitochondrial homeostasis by increasing autophagic flux (potentially through mTOR inhibition). Since ß-OHB has been safely tested in heart failure patients, it may be a viable therapeutic to reduce infarct size in STEMI patients.


Asunto(s)
Insuficiencia Cardíaca , Daño por Reperfusión Miocárdica , Infarto del Miocardio con Elevación del ST , Ratones , Ratas , Animales , Humanos , Masculino , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/uso terapéutico , Infarto del Miocardio con Elevación del ST/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Mitocondrias/metabolismo , Autofagia , Serina-Treonina Quinasas TOR/metabolismo , Reperfusión , Insuficiencia Cardíaca/metabolismo
4.
Annu Rev Physiol ; 82: 79-101, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31589825

RESUMEN

On Earth, all life is exposed to dramatic changes in the environment over the course of the day; consequently, organisms have evolved strategies to both adapt to and anticipate these 24-h oscillations. As a result, time of day is a major regulator of mammalian physiology and processes, including transcription, signaling, metabolism, and muscle contraction, all of which oscillate over the course of the day. In particular, the heart is subject to wide fluctuations in energetic demand throughout the day as a result of waking, physical activity, and food intake patterns. Daily rhythms in cardiovascular function ensure that increased delivery of oxygen, nutrients, and endocrine factors to organs during the active period and the removal of metabolic by-products are in balance. Failure to maintain these physiologic rhythms invariably has pathologic consequences. This review highlights rhythms that underpin cardiac physiology. More specifically, we summarize the key aspects of cardiac physiology that oscillate over the course of the day and discuss potential mechanisms that regulate these 24-h rhythms.


Asunto(s)
Ritmo Circadiano/fisiología , Corazón/fisiología , Animales , Fenómenos Fisiológicos Cardiovasculares , Fenómenos Cronobiológicos , Humanos
5.
FASEB J ; 35(3): e21298, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33660366

RESUMEN

An intrinsic property of the heart is an ability to rapidly and coordinately adjust flux through metabolic pathways in response to physiologic stimuli (termed metabolic flexibility). Cardiac metabolism also fluctuates across the 24-hours day, in association with diurnal sleep-wake and fasting-feeding cycles. Although loss of metabolic flexibility has been proposed to play a causal role in the pathogenesis of cardiac disease, it is currently unknown whether day-night variations in cardiac metabolism are altered during disease states. Here, we tested the hypothesis that diet-induced obesity disrupts cardiac "diurnal metabolic flexibility", which is normalized by time-of-day-restricted feeding. Chronic high fat feeding (20-wk)-induced obesity in mice, abolished diurnal rhythms in whole body metabolic flexibility, and increased markers of adverse cardiac remodeling (hypertrophy, fibrosis, and steatosis). RNAseq analysis revealed that 24-hours rhythms in the cardiac transcriptome were dramatically altered during obesity; only 22% of rhythmic transcripts in control hearts were unaffected by obesity. However, day-night differences in cardiac substrate oxidation were essentially identical in control and high fat fed mice. In contrast, day-night differences in both cardiac triglyceride synthesis and lipidome were abolished during obesity. Next, a subset of obese mice (induced by 18-wks ad libitum high fat feeding) were allowed access to the high fat diet only during the 12-hours dark (active) phase, for a 2-wk period. Dark phase restricted feeding partially restored whole body metabolic flexibility, as well as day-night differences in cardiac triglyceride synthesis and lipidome. Moreover, this intervention partially reversed adverse cardiac remodeling in obese mice. Collectively, these studies reveal diurnal metabolic inflexibility of the heart during obesity specifically for nonoxidative lipid metabolism (but not for substrate oxidation), and that restricting food intake to the active period partially reverses obesity-induced cardiac lipid metabolism abnormalities and adverse remodeling of the heart.


Asunto(s)
Ritmo Circadiano/fisiología , Miocardio/metabolismo , Obesidad/metabolismo , Animales , Dieta Alta en Grasa , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Circ Res ; 126(2): 258-279, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31944922

RESUMEN

Essentially all biological processes fluctuate over the course of the day, observed at cellular (eg, transcription, translation, and signaling), organ (eg, contractility and metabolism), and whole-body (eg, physical activity and appetite) levels. It is, therefore, not surprising that both cardiovascular physiology (eg, heart rate and blood pressure) and pathophysiology (eg, onset of adverse cardiovascular events) oscillate during the 24-hour day. Chronobiological influence over biological processes involves a complex interaction of factors that are extrinsic (eg, neurohumoral factors) and intrinsic (eg, circadian clocks) to cells. Here, we focus on circadian governance of 6 fundamentally important processes: metabolism, signaling, electrophysiology, extracellular matrix, clotting, and inflammation. In each case, we discuss (1) the physiological significance for circadian regulation of these processes (ie, the good); (2) the pathological consequence of circadian governance impairment (ie, the bad); and (3) whether persistence/augmentation of circadian influences contribute to pathogenesis during distinct disease states (ie, the ugly). Finally, the translational impact of chronobiology on cardiovascular disease is highlighted.


Asunto(s)
Relojes Biológicos , Enfermedades Cardiovasculares/etiología , Fenómenos Fisiológicos Cardiovasculares , Animales , Humanos , Miocardio/metabolismo
7.
J Mol Cell Cardiol ; 157: 31-44, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33894212

RESUMEN

Essentially all biological processes fluctuate over the course of the day, manifesting as time-of-day-dependent variations with regards to the way in which organ systems respond to normal behaviors. For example, basic, translational, and epidemiologic studies indicate that temporal partitioning of metabolic processes governs the fate of dietary nutrients, in a manner in which concentrating caloric intake towards the end of the day is detrimental to both cardiometabolic and cardiovascular parameters. Despite appreciation that branched chain amino acids impact risk for obesity, diabetes mellitus, and heart failure, it is currently unknown whether the time-of-day at which dietary BCAAs are consumed influence cardiometabolic/cardiovascular outcomes. Here, we report that feeding mice a BCAA-enriched meal at the end of the active period (i.e., last 4 h of the dark phase) rapidly increases cardiac protein synthesis and mass, as well as cardiomyocyte size; consumption of the same meal at the beginning of the active period (i.e., first 4 h of the dark phase) is without effect. This was associated with a greater BCAA-induced activation of mTOR signaling in the heart at the end of the active period; pharmacological inhibition of mTOR (through rapamycin) blocked BCAA-induced augmentation of cardiac mass and cardiomyocyte size. Moreover, genetic disruption of the cardiomyocyte circadian clock abolished time-of-day-dependent fluctuations in BCAA-responsiveness. Finally, we report that repetitive consumption of BCAA-enriched meals at the end of the active period accelerated adverse cardiac remodeling and contractile dysfunction in mice subjected to transverse aortic constriction. Thus, our data demonstrate that the timing of BCAA consumption has significant implications for cardiac health and disease.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Metabolismo Energético , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Vigilia , Factores de Transcripción ARNTL/deficiencia , Animales , Biomarcadores , Relojes Circadianos , Susceptibilidad a Enfermedades , Ingestión de Alimentos , Ratones , Ratones Noqueados , Biosíntesis de Proteínas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Remodelación Ventricular/genética
8.
J Mol Cell Cardiol ; 149: 54-72, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32961201

RESUMEN

Myocardial infarction (MI) leading to heart failure (HF) is a major cause of death worldwide. Previous studies revealed that the circadian system markedly impacts cardiac repair post-MI, and that light is an important environmental factor modulating the circadian influence over healing. Recent studies suggest that gut physiology also affects the circadian system, but how it contributes to cardiac repair post-MI and in HF is not well understood. To address this question, we first used a murine coronary artery ligation MI model to reveal that an intact gut microbiome is important for cardiac repair. Specifically, gut microbiome disruption impairs normal inflammatory responses in infarcted myocardium, elevates adverse cardiac gene biomarkers, and leads to worse HF outcomes. Conversely, reconstituting the microbiome post-MI in mice with prior gut microbiome disruption improves healing, consistent with the notion that normal gut physiology contributes to cardiac repair. To investigate a role for the circadian system, we initially utilized circadian mutant Clock∆19/∆19 mice, revealing that a functional circadian mechanism is necessary for gut microbiome benefits on post-MI cardiac repair and HF. Finally, we demonstrate that circadian-mediated gut responses that benefit cardiac repair can be conferred by time-restricted feeding, as wake time feeding of MI mice improves HF outcomes, but these benefits are not observed in MI mice fed during their sleep time. In summary, gut physiology is important for cardiac repair, and the circadian system influences the beneficial gut responses to improve post-MI and HF outcomes.


Asunto(s)
Ritmo Circadiano/fisiología , Microbioma Gastrointestinal , Insuficiencia Cardíaca/microbiología , Insuficiencia Cardíaca/fisiopatología , Animales , Proteínas CLOCK/metabolismo , Hemodinámica , Inflamación/patología , Leucocitos/patología , Masculino , Metaboloma , Ratones Endogámicos C57BL , Infarto del Miocardio/microbiología , Infarto del Miocardio/fisiopatología , Remodelación Ventricular/fisiología
9.
Am J Physiol Heart Circ Physiol ; 318(6): H1487-H1508, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32357113

RESUMEN

Cell-autonomous circadian clocks have emerged as temporal orchestrators of numerous biological processes. For example, the cardiomyocyte circadian clock modulates transcription, translation, posttranslational modifications, ion homeostasis, signaling cascades, metabolism, and contractility of the heart over the course of the day. Circadian clocks are composed of more than 10 interconnected transcriptional modulators, all of which have the potential to influence the cardiac transcriptome (and ultimately cardiac processes). These transcriptional modulators include BMAL1 and REV-ERBα/ß; BMAL1 induces REV-ERBα/ß, which in turn feeds back to inhibit BMAL1. Previous studies indicate that cardiomyocyte-specific BMAL1-knockout (CBK) mice exhibit a dysfunctional circadian clock (including decreased REV-ERBα/ß expression) in the heart associated with abnormalities in cardiac mitochondrial function, metabolism, signaling, and contractile function. Here, we hypothesized that decreased REV-ERBα/ß activity is responsible for distinct phenotypical alterations observed in CBK hearts. To test this hypothesis, CBK (and littermate control) mice were administered with the selective REV-ERBα/ß agonist SR-9009 (100 mg·kg-1·day-1 for 8 days). SR-9009 administration was sufficient to normalize cardiac glycogen synthesis rates, cardiomyocyte size, interstitial fibrosis, and contractility in CBK hearts (without influencing mitochondrial complex activities, nor normalizing substrate oxidation and Akt/mTOR/GSK3ß signaling). Collectively, these observations highlight a role for REV-ERBα/ß as a mediator of a subset of circadian clock-controlled processes in the heart.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Miocardio/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/agonistas , Factores de Transcripción ARNTL/metabolismo , Animales , Ritmo Circadiano/efectos de los fármacos , Expresión Génica , Regulación de la Expresión Génica , Corazón/efectos de los fármacos , Ratones , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Pirrolidinas/farmacología , Tiofenos/farmacología
10.
Am J Physiol Heart Circ Physiol ; 318(3): H682-H695, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32004065

RESUMEN

Evidence suggests that mitochondrial network integrity is impaired in cardiomyocytes from failing hearts. While oxidative stress has been implicated in heart failure (HF)-associated mitochondrial remodeling, the effect of mitochondrial-targeted antioxidants, such as mitoquinone (MitoQ), on the mitochondrial network in a model of HF (e.g., pressure overload) has not been demonstrated. Furthermore, the mechanism of this regulation is not completely understood with an emerging role for posttranscriptional regulation via long noncoding RNAs (lncRNAs). We hypothesized that MitoQ preserves mitochondrial fusion proteins (i.e., mitofusin), likely through redox-sensitive lncRNAs, leading to improved mitochondrial network integrity in failing hearts. To test this hypothesis, 8-wk-old C57BL/6J mice were subjected to ascending aortic constriction (AAC), which caused substantial left ventricular (LV) chamber remodeling and remarkable contractile dysfunction in 1 wk. Transmission electron microscopy and immunostaining revealed defective intermitochondrial and mitochondrial-sarcoplasmic reticulum ultrastructure in AAC mice compared with sham-operated animals, which was accompanied by elevated oxidative stress and suppressed mitofusin (i.e., Mfn1 and Mfn2) expression. MitoQ (1.36 mg·day-1·mouse-1, 7 consecutive days) significantly ameliorated LV dysfunction, attenuated Mfn2 downregulation, improved interorganellar contact, and increased metabolism-related gene expression. Moreover, our data revealed that MitoQ alleviated the dysregulation of an Mfn2-associated lncRNA (i.e., Plscr4). In summary, the present study supports a unique mechanism by which MitoQ improves myocardial intermitochondrial and mitochondrial-sarcoplasmic reticulum (SR) ultrastructural remodeling in HF by maintaining Mfn2 expression via regulation by an lncRNA. These findings underscore the important role of lncRNAs in the pathogenesis of HF and the potential of targeting them for effective HF treatment.NEW & NOTEWORTHY We have shown that MitoQ improves cardiac mitochondrial network integrity and mitochondrial-SR alignment in a pressure-overload mouse heart-failure model. This may be occurring partly through preventing the dysregulation of a redox-sensitive lncRNA-microRNA pair (i.e., Plscr4-miR-214) that results in an increase in mitofusin-2 expression.


Asunto(s)
Antioxidantes/farmacología , Insuficiencia Cardíaca/metabolismo , Mitocondrias/efectos de los fármacos , Compuestos Organofosforados/farmacología , Estrés Oxidativo/efectos de los fármacos , Ubiquinona/análogos & derivados , Animales , Modelos Animales de Enfermedad , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Oxidación-Reducción/efectos de los fármacos , ARN no Traducido/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/farmacología
11.
Am J Physiol Heart Circ Physiol ; 316(5): H1014-H1026, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30575437

RESUMEN

The endoplasmic reticulum/sarcoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1), a key mediator of store-operated Ca2+ entry, is expressed in cardiomyocytes and has been implicated in regulating multiple cardiac processes, including hypertrophic signaling. Interestingly, cardiomyocyte-restricted deletion of STIM1 (crSTIM1-KO) results in age-dependent endoplasmic reticulum stress, altered mitochondrial morphology, and dilated cardiomyopathy in mice. Here, we tested the hypothesis that STIM1 deficiency may also impact cardiac metabolism. Hearts isolated from 20-wk-old crSTIM1-KO mice exhibited a significant reduction in both oxidative and nonoxidative glucose utilization. Consistent with the reduction in glucose utilization, expression of glucose transporter 4 and AMP-activated protein kinase phosphorylation were all reduced, whereas pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase phosphorylation were increased, in crSTIM1-KO hearts. Despite similar rates of fatty acid oxidation in control and crSTIM1-KO hearts ex vivo, crSTIM1-KO hearts contained increased lipid/triglyceride content as well as increased fatty acid-binding protein 4, fatty acid synthase, acyl-CoA thioesterase 1, hormone-sensitive lipase, and adipose triglyceride lipase expression compared with control hearts, suggestive of a possible imbalance between fatty acid uptake and oxidation. Insulin-mediated alterations in AKT phosphorylation were observed in crSTIM1-KO hearts, consistent with cardiac insulin resistance. Interestingly, we observed abnormal mitochondria and increased lipid accumulation in 12-wk crSTIM1-KO hearts, suggesting that these changes may initiate the subsequent metabolic dysfunction. These results demonstrate, for the first time, that cardiomyocyte STIM1 may play a key role in regulating cardiac metabolism. NEW & NOTEWORTHY Little is known of the physiological role of stromal interaction molecule 1 (STIM1) in the heart. Here, we demonstrate, for the first time, that hearts lacking cardiomyocyte STIM1 exhibit dysregulation of both cardiac glucose and lipid metabolism. Consequently, these results suggest a potentially novel role for STIM1 in regulating cardiac metabolism.


Asunto(s)
Metabolismo Energético , Glucosa/metabolismo , Metabolismo de los Lípidos , Miocitos Cardíacos/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Acido Graso Sintasa Tipo I/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Femenino , Transportador de Glucosa de Tipo 4/metabolismo , Masculino , Ratones Noqueados , Oxidación-Reducción , Fosforilación , Proteínas Quinasas/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Esterol Esterasa/metabolismo , Molécula de Interacción Estromal 1/deficiencia , Molécula de Interacción Estromal 1/genética , Tioléster Hidrolasas/metabolismo
12.
Am J Physiol Renal Physiol ; 314(1): F89-F98, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28971988

RESUMEN

Speed JS, Hyndman KA, Roth K, Heimlich JB, Kasztan M, Fox BM, Johnston JG, Becker BK, Jin C, Gamble KL, Young ME, Pollock JS, Pollock DM. High dietary sodium causes dyssynchrony of the renal molecular clock in rats. Am J Physiol Renal Physiol 314: F89-F98, 2018. First published September 27, 2017; doi:10.1152/ajprenal.00028.2017.-Dyssynchrony of circadian rhythms is associated with various disorders, including cardiovascular and metabolic diseases. The cell autonomous molecular clock maintains circadian control; however, environmental factors that may cause circadian dyssynchrony either within or between organ systems are poorly understood. Our laboratory recently reported that the endothelin (ET-1) B (ETB) receptor functions to facilitate Na+ excretion in a time of day-dependent manner. Therefore, the present study was designed to determine whether high salt (HS) intake leads to circadian dyssynchrony within the kidney and whether the renal endothelin system contributes to control of the renal molecular clock. We observed that HS feeding led to region-specific alterations in circadian clock components within the kidney. For instance, HS caused a significant 5.5-h phase delay in the peak expression of Bmal1 and suppressed Cry1 and Per2 expression in the renal inner medulla, but not the renal cortex, of control rats. The phase delay in Bmal1 expression appears to be mediated by ET-1 because this phenomenon was not observed in the ETB-deficient rat. In cultured inner medullary collecting duct cells, ET-1 suppressed Bmal1 mRNA expression. Furthermore, Bmal1 knockdown in these cells reduced epithelial Na+ channel expression. These data reveal that HS feeding leads to intrarenal circadian dyssynchrony mediated, in part, through activation of ETB receptors within the renal inner medulla.


Asunto(s)
Proteínas CLOCK/metabolismo , Riñón/metabolismo , Cloruro de Sodio Dietético/metabolismo , Sodio en la Dieta/metabolismo , Animales , Ritmo Circadiano/fisiología , Endotelinas/metabolismo , Conducta Alimentaria/fisiología , Masculino , Proteínas Circadianas Period/metabolismo , Ratas
13.
Am J Physiol Gastrointest Liver Physiol ; 314(3): G431-G447, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29191941

RESUMEN

Multiple metabolic pathways exhibit time-of-day-dependent rhythms that are controlled by the molecular circadian clock. We have shown that chronic alcohol is capable of altering the molecular clock and diurnal oscillations in several elements of hepatic glycogen metabolism ( 19 , 44 ). Herein, we sought to determine whether genetic disruption of the hepatocyte clock differentially impacts hepatic glycogen content in chronic alcohol-fed mice. Male hepatocyte-specific BMAL1 knockout (HBK) and littermate controls were fed control or alcohol-containing diets for 5 wk to alter hepatic glycogen content. Glycogen displayed a significant diurnal rhythm in livers of control genotype mice fed the control diet. While rhythmic, alcohol significantly altered the diurnal oscillation of glycogen in livers of control genotype mice. The glycogen rhythm was mildly altered in livers of control-fed HBK mice. Importantly, glycogen content was arrhythmic in livers of alcohol-fed HBK mice. Consistent with these changes in hepatic glycogen content, we observed that some glycogen and glucose metabolism genes were differentially altered by chronic alcohol consumption in livers of HBK and littermate control mice. Diurnal rhythms in glycogen synthase (mRNA and protein) were significantly altered by alcohol feeding and clock disruption. Alcohol consumption significantly altered Gck, Glut2, and Ppp1r3g rhythms in livers of control genotype mice, with diurnal rhythms of Pklr, Glut2, Ppp1r3c, and Ppp1r3g further disrupted (dampened or arrhythmic) in livers of HBK mice. Taken together, these findings show that chronic alcohol consumption and hepatocyte clock disruption differentially influence the diurnal rhythm of glycogen and various key glycogen metabolism-related genes in the liver. NEW & NOTEWORTHY We report that circadian clock disruption exacerbates alcohol-mediated alterations in hepatic glycogen. We observed differential responsiveness in diurnal rhythms of glycogen and glycogen metabolism genes and proteins in livers of hepatocyte-specific BMAL1 knockout and littermate control mice fed alcohol. Our findings provide new insights into potential mechanisms by which alcohol alters glycogen, an important energy source for liver and other organs.


Asunto(s)
Factores de Transcripción ARNTL/deficiencia , Consumo de Bebidas Alcohólicas/metabolismo , Ritmo Circadiano , Eliminación de Gen , Glucógeno/metabolismo , Hepatocitos/metabolismo , Hepatopatías Alcohólicas/metabolismo , Hígado/metabolismo , Factores de Transcripción ARNTL/genética , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/patología , Animales , Ritmo Circadiano/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Genotipo , Glucosa/metabolismo , Hepatocitos/patología , Hígado/patología , Hepatopatías Alcohólicas/etiología , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/patología , Masculino , Ratones Noqueados , Fenotipo , Factores de Tiempo
14.
Am J Physiol Heart Circ Physiol ; 314(2): H160-H169, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28986357

RESUMEN

Maintaining a balance of ω-6 and ω-3 fatty acids is essential for cardiac health. Current ω-6 and ω-3 fatty acids in the American diet have shifted from the ideal ratio of 2:1 to almost 20:1; while there is a body of evidence that suggests the negative impact of such a shift in younger organisms, the underlying age-related metabolic signaling in response to the excess influx of ω-6 fatty acids is incompletely understood. In the present study, young (6 mo old) and aging (≥18 mo old) mice were fed for 2 mo with a ω-6-enriched diet. Excess intake of ω-6 enrichment decreased the total lean mass and increased nighttime carbohydrate utilization, with higher levels of cardiac cytokines indicating low-grade chronic inflammation. Dobutamine-induced stress tests displayed an increase in PR interval, a sign of an atrioventricular defect in ω-6-fed aging mice. Excess ω-6 fatty acid intake in aging mice showed decreased 12-lipoxygenase with a concomitant increase in 15-lipoxygenase levels, resulting in the generation of 15( S)-hydroxyeicosatetraenoic acid, whereas cyclooxygenase-1 and -2 generated prostaglandin E2, leukotriene B4, and thromboxane B2. Furthermore, excessive ω-6 fatty acids led to dysregulated nuclear erythroid 2-related factor 2/antioxidant-responsive element in aging mice. Moreover, ω-6 fatty acid-mediated changes were profound in aging mice with respect to the eicosanoid profile while minimal changes were observed in the size and shape of cardiomyocytes. These findings provide compelling evidence that surplus consumption of ω-6 fatty acids, coupled with insufficient intake of ω-3 fatty acids, is linked to abnormal changes in ECG. These manifestations contribute to functional deficiencies and expansion of the inflammatory mediator milieu during later stages of aging. NEW & NOTEWORTHY Aging has a profound impact on the metabolism of fatty acids to maintain heart function. The excess influx of ω-6 fatty acids in aging perturbed electrocardiography with marked signs of inflammation and a dysregulated oxidative-redox balance. Thus, the quality and quantity of fatty acids determine the cardiac pathology and energy utilization in aging.


Asunto(s)
Envejecimiento/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Arritmias Cardíacas/inducido químicamente , Electrocardiografía , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos Omega-6/toxicidad , Sistema de Conducción Cardíaco/efectos de los fármacos , Inflamación/inducido químicamente , Potenciales de Acción/efectos de los fármacos , Factores de Edad , Alimentación Animal , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Enfermedad Crónica , Citocinas/genética , Citocinas/metabolismo , Ácidos Grasos Omega-6/administración & dosificación , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Inflamación/metabolismo , Inflamación/fisiopatología , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Estado Nutricional , Medición de Riesgo , Factores de Riesgo
15.
Circ Res ; 118(10): 1659-701, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27012580

RESUMEN

In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.


Asunto(s)
American Heart Association , Técnicas de Imagen Cardíaca/métodos , Enfermedades Cardiovasculares/metabolismo , Biología Computacional/métodos , Miocardio/metabolismo , Animales , Enfermedades Cardiovasculares/diagnóstico por imagen , Enfermedades Cardiovasculares/genética , Humanos , Estados Unidos
16.
J Mol Cell Cardiol ; 110: 80-95, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28736261

RESUMEN

Cardiovascular physiology exhibits time-of-day-dependent oscillations, which are mediated by both extrinsic (e.g., environment/behavior) and intrinsic (e.g., circadian clock) factors. Disruption of circadian rhythms negatively affects multiple cardiometabolic parameters. Recent studies suggest that the cardiomyocyte circadian clock directly modulates responsiveness of the heart to metabolic stimuli (e.g., fatty acids) and stresses (e.g., ischemia/reperfusion). The aim of this study was to determine whether genetic disruption of the cardiomyocyte circadian clock impacts insulin-regulated pathways in the heart. Genetic disruption of the circadian clock in cardiomyocyte-specific Bmal1 knockout (CBK) and cardiomyocyte-specific Clock mutant (CCM) mice altered expression (gene and protein) of multiple insulin signaling components in the heart, including p85α and Akt. Both baseline and insulin-mediated Akt activation was augmented in CBK and CCM hearts (relative to littermate controls). However, insulin-mediated glucose utilization (both oxidative and non-oxidative) and AS160 phosphorylation were attenuated in CBK hearts, potentially secondary to decreased Inhibitor-1. Consistent with increased Akt activation in CBK hearts, mTOR signaling was persistently increased, which was associated with attenuation of autophagy, augmented rates of protein synthesis, and hypertrophy. Importantly, pharmacological inhibition of mTOR (rapamycin; 10days) normalized cardiac size in CBK mice. These data suggest that disruption of cardiomyocyte circadian clock differentially influences insulin-regulated processes, and provide new insights into potential pathologic mediators following circadian disruption.


Asunto(s)
Relojes Circadianos/genética , Corazón/efectos de los fármacos , Corazón/fisiopatología , Insulina/farmacología , Miocitos Cardíacos/patología , Factores de Transcripción ARNTL/metabolismo , Animales , Autofagia/efectos de los fármacos , Relojes Circadianos/efectos de los fármacos , Activación Enzimática , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Resistencia a la Insulina/genética , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo
17.
Biochim Biophys Acta ; 1861(10): 1579-95, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26721420

RESUMEN

A mismatch between fatty acid availability and utilization leads to cellular/organ dysfunction during cardiometabolic disease states (e.g., obesity, diabetes mellitus). This can precipitate cardiac dysfunction. The heart adapts to increased fatty acid availability at transcriptional, translational, post-translational and metabolic levels, thereby attenuating cardiomyopathy development. We have previously reported that the cardiomyocyte circadian clock regulates transcriptional responsiveness of the heart to acute increases in fatty acid availability (e.g., short-term fasting). The purpose of the present study was to investigate whether the cardiomyocyte circadian clock plays a role in adaptation of the heart to chronic elevations in fatty acid availability. Fatty acid availability was increased in cardiomyocyte-specific CLOCK mutant (CCM) and wild-type (WT) littermate mice for 9weeks in time-of-day-independent (streptozotocin (STZ) induced diabetes) and dependent (high fat diet meal feeding) manners. Indices of myocardial metabolic adaptation (e.g., substrate reliance perturbations) to STZ-induced diabetes and high fat meal feeding were found to be dependent on genotype. Various transcriptional and post-translational mechanisms were investigated, revealing that Cte1 mRNA induction in the heart during STZ-induced diabetes is attenuated in CCM hearts. At the functional level, time-of-day-dependent high fat meal feeding tended to influence cardiac function to a greater extent in WT versus CCM mice. Collectively, these data suggest that CLOCK (a circadian clock component) is important for metabolic adaption of the heart to prolonged elevations in fatty acid availability. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.


Asunto(s)
Adaptación Fisiológica , Proteínas CLOCK/metabolismo , Ácidos Grasos/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Dieta Alta en Grasa , Conducta Alimentaria , Masculino , Ratones Mutantes , Contracción Miocárdica , Especificidad de Órganos , Estreptozocina
18.
Brain Behav Immun ; 61: 266-273, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27600185

RESUMEN

The incidence of cognitive impairment in cardiovascular disease (CVD) patients has increased, adversely impacting quality of life and imposing a significant economic burden. Brain imaging of CVD patients has detected changes in the hippocampus, a brain region critical for normal learning and memory. However, it is not clear whether adverse cardiac events or other associated co-morbidities impair cognition. Here, using a murine model of acute myocardial ischemia/reperfusion (I/R), where the coronary artery was occluded for 30min followed by reperfusion, we tested the hypothesis that acute myocardial infarction triggers impairment in cognitive function. Two months following cardiac I/R, behavioral assessments specific for hippocampal cognitive function were performed. Mice subjected to cardiac I/R performed worse in the fear-conditioning paradigm as well as the object location memory behavioral test compared to sham-operated mice. Reactive gliosis was apparent in the hippocampal subregions CA1, CA3, and dentate gyrus 72h post-cardiac I/R as compared with sham, which was sustained two months post-cardiac I/R. Consistent with the inflammatory response, the abundance of doublecortin positive newborn neurons was decreased in the dentate gyrus 72h and 2months post-cardiac I/R as compared with sham. Therefore, we conclude that following acute myocardial infarction, rapid inflammatory responses negatively affect neurogenesis, which may underlie long-term changes in learning and memory.


Asunto(s)
Hipocampo/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Isquemia Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/fisiopatología , Neurogénesis/fisiología , Animales , Cognición/fisiología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Masculino , Ratones , Isquemia Miocárdica/psicología , Neuronas/fisiología
19.
Am J Physiol Heart Circ Physiol ; 311(1): H64-75, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27199118

RESUMEN

Myocardial fatty acid ß-oxidation is critical for the maintenance of energy homeostasis and contractile function in the heart, but its regulation is still not fully understood. While thioredoxin-interacting protein (TXNIP) has recently been implicated in cardiac metabolism and mitochondrial function, its effects on ß-oxidation have remained unexplored. Using a new cardiomyocyte-specific TXNIP knockout mouse and working heart perfusion studies, as well as loss- and gain-of-function experiments in rat H9C2 and human AC16 cardiomyocytes, we discovered that TXNIP deficiency promotes myocardial ß-oxidation via signaling through a specific microRNA, miR-33a. TXNIP deficiency leads to increased binding of nuclear factor Y (NFYA) to the sterol regulatory element binding protein 2 (SREBP2) promoter, resulting in transcriptional inhibition of SREBP2 and its intronic miR-33a. This allows for increased translation of the miR-33a target genes and ß-oxidation-promoting enzymes, carnitine octanoyl transferase (CROT), carnitine palmitoyl transferase 1 (CPT1), hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase-ß (HADHB), and AMPKα and is associated with an increase in phospho-AMPKα and phosphorylation/inactivation of acetyl-CoA-carboxylase. Thus, we have identified a novel TXNIP-NFYA-SREBP2/miR-33a-AMPKα/CROT/CPT1/HADHB pathway that is conserved in mouse, rat, and human cardiomyocytes and regulates myocardial ß-oxidation.


Asunto(s)
Proteínas Portadoras/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Tiorredoxinas/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Carnitina Aciltransferasas/genética , Carnitina Aciltransferasas/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Línea Celular , Regulación Enzimológica de la Expresión Génica , Genotipo , Humanos , Preparación de Corazón Aislado , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Subunidad beta de la Proteína Trifuncional Mitocondrial/genética , Subunidad beta de la Proteína Trifuncional Mitocondrial/metabolismo , Miocitos Cardíacos/enzimología , Oxidación-Reducción , Fenotipo , Interferencia de ARN , Ratas , Transducción de Señal , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Tiorredoxinas/genética , Transfección
20.
Am J Physiol Heart Circ Physiol ; 310(11): H1520-32, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27084392

RESUMEN

Circadian clocks are critical modulators of metabolism. However, mechanistic links between cell autonomous clocks and metabolic processes remain largely unknown. Here, we report that expression of the biotin transporter slc5a6 gene is decreased in hearts of two distinct genetic mouse models of cardiomyocyte-specific circadian clock disruption [i.e., cardiomyocyte-specific CLOCK mutant (CCM) and cardiomyocyte-specific BMAL1 knockout (CBK) mice]. Biotinylation is an obligate posttranslational modification for five mammalian carboxylases: acetyl-CoA carboxylase α (ACCα), ACCß, pyruvate carboxylase (PC), methylcrotonyl-CoA carboxylase (MCC), and propionyl-CoA carboxylase (PCC). We therefore hypothesized that the cardiomyocyte circadian clock impacts metabolism through biotinylation. Consistent with decreased slc5a6 expression, biotinylation of all carboxylases is significantly decreased (10-46%) in CCM and CBK hearts. In association with decreased biotinylated ACC, oleate oxidation rates are increased in both CCM and CBK hearts. Consistent with decreased biotinylated MCC, leucine oxidation rates are significantly decreased in both CCM and CBK hearts, whereas rates of protein synthesis are increased. Importantly, feeding CBK mice with a biotin-enriched diet for 6 wk normalized myocardial 1) ACC biotinylation and oleate oxidation rates; 2) PCC/MCC biotinylation (and partially restored leucine oxidation rates); and 3) net protein synthesis rates. Furthermore, data suggest that the RRAGD/mTOR/4E-BP1 signaling axis is chronically activated in CBK and CCM hearts. Finally we report that the hepatocyte circadian clock also regulates both slc5a6 expression and protein biotinylation in the liver. Collectively, these findings suggest that biotinylation is a novel mechanism by which cell autonomous circadian clocks influence metabolic pathways.


Asunto(s)
Biotinilación , Liasas de Carbono-Carbono/metabolismo , Trastornos Cronobiológicos/metabolismo , Relojes Circadianos , Metabolismo Energético , Cardiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Acetil-CoA Carboxilasa/metabolismo , Animales , Biotina/administración & dosificación , Biotina/metabolismo , Proteínas CLOCK/genética , Ligasas de Carbono-Carbono/metabolismo , Trastornos Cronobiológicos/genética , Trastornos Cronobiológicos/fisiopatología , Relojes Circadianos/genética , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Cardiopatías/genética , Cardiopatías/fisiopatología , Hígado/metabolismo , Masculino , Metilmalonil-CoA Descarboxilasa/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo , Piruvato Carboxilasa/metabolismo , Simportadores/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA