RESUMEN
Ion mobility spectrometry-mass spectrometry (IMS-MS) determines momentum transfer cross sections of ions to elucidate their structures. Recent IMS methods employ electrodynamic fields or nonstationary buffer gases to separate ions. These methods require a calibration procedure to determine ion mobilities from the experimental data. This applies in particular to trapped IMS (TIMS), a novel IMS method with reported high resolving powers. Here, we report the first systematic assessment of the accuracy and the limitations of mobility calibration in TIMS. Our data show that the currently used TIMS calibration approach reproduces drift tube mobilities to approximately 1% (95th percentile). Furthermore, we develop a transferable and sample-independent calibration procedure for TIMS. The central aspects of our approach are (1) a calibration function derived from a solution to the Boltzmann transport equation and (2) calibration constants based on a Taylor expansion of instrument properties (TEIP). The key advantage of our calibration approach over current ones is its transferability: one equation and one set of parameters are sufficient to calibrate ion mobilities for various instrument settings, compound classes, or charge states. Our approach is transferable over time and sufficiently accurate (â¼1-2%) for structure-elucidation purposes. While we develop our calibration procedure specifically for TIMS, the approach we take is generic in nature and can be applied to other IMS systems.
RESUMEN
Triple-negative breast cancer (TNBC) constitutes 10%-15% of all breast tumors. The current standard of care is multiagent chemotherapy, which is effective in only a subset of patients. The original objective of this study was to deploy a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) to identify kinases elevated in non-pCR (pathologic complete response) cases for therapeutic targeting. Frozen optimal cutting temperature compound-embedded core needle biopsies were obtained from 43 patients with TNBC before docetaxel- and carboplatin-based neoadjuvant chemotherapy. KIPA was applied to the native tumor lysates that were extracted from samples with high tumor content. Seven percent of all identified proteins were kinases, and none were significantly associated with lack of pCR. However, among a large population of "off-target" purine-binding proteins (PBP) identified, seven were enriched in pCR-associated samples (P < 0.01). In orthogonal mRNA-based TNBC datasets, this seven-gene "PBP signature" was associated with chemotherapy sensitivity and favorable clinical outcomes. Functional annotation demonstrated IFN gamma response, nuclear import of DNA repair proteins, and cell death associations. Comparisons with standard tandem mass tagged-based discovery proteomics performed on the same samples demonstrated that KIPA-nominated pCR biomarkers were unique to the platform. KIPA is a novel biomarker discovery tool with unexpected utility for the identification of PBPs related to cytotoxic drug response. The PBP signature has the potential to contribute to clinical trials designed to either escalate or de-escalate therapy based on pCR probability. Significance: The identification of pretreatment predictive biomarkers for pCR in response to neoadjuvant chemotherapy would advance precision treatment for TNBC. To complement standard proteogenomic discovery profiling, a KIPA was deployed and unexpectedly identified a seven-member non-kinase PBP pCR-associated signature. Individual members served diverse pathways including IFN gamma response, nuclear import of DNA repair proteins, and cell death.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Proteínas Portadoras , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antineoplásicos/farmacología , Docetaxel , PurinasRESUMEN
Transcriptionally active ESR1 fusions (ESR1-TAF) are a potent cause of breast cancer endocrine therapy (ET) resistance. ESR1-TAFs are not directly druggable because the C-terminal estrogen/anti-estrogen-binding domain is replaced with translocated in-frame partner gene sequences that confer constitutive transactivation. To discover alternative treatments, a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) was deployed to identify druggable kinases that are upregulated by diverse ESR1-TAFs. Subsequent explorations of drug sensitivity validated RET kinase as a common therapeutic vulnerability despite remarkable ESR1-TAF C-terminal sequence and structural diversity. Organoids and xenografts from a pan-ET-resistant patient-derived xenograft model that harbors the ESR1-e6>YAP1 TAF were concordantly inhibited by the selective RET inhibitor pralsetinib to a similar extent as the CDK4/6 inhibitor palbociclib. Together, these findings provide preclinical rationale for clinical evaluation of RET inhibition for the treatment of ESR1-TAF-driven ET-resistant breast cancer. SIGNIFICANCE: Kinome analysis of ESR1 translocated and mutated breast tumors using drug bead-based mass spectrometry followed by drug-sensitivity studies nominates RET as a therapeutic target. See related commentary by Wu and Subbiah, p. 3159.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Animales , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/genética , Antineoplásicos/uso terapéutico , Modelos Animales de Enfermedad , MutaciónRESUMEN
Structure elucidation by ion mobility spectrometry-mass spectrometry methods is based on the comparison of an experimentally measured momentum transfer cross-section to cross-sections calculated for model structures. Thus, it is imperative that the calculated cross-section must be accurate. However, it is not fully understood how important it is to accurately model the charge distribution of an analyte ion when calculating momentum transfer cross-sections. Here, we calculate and compare momentum transfer cross-sections for carbon clusters that differ in mass, charge state, and mode of charge distribution, and vary temperature and polarizability of the buffer gas. Our data indicate that the detailed distribution of the ion charge density is intimately linked to the contribution of glancing collisions to the momentum transfer cross-section. The data suggest that analyte ions with molecular mass ~3 kDa or momentum transfer cross-section 400-500 Å2 would be significantly influenced by the charge distribution in nitrogen buffer gas. Our data further suggest that accurate structure elucidation on the basis of IMS-MS data measured in nitrogen buffer gas must account for the molecular charge distribution even for systems as large as C960 (~12 kDa) when localized charges are present and/or measurements are conducted under cryogenic temperatures. Finally, our data underscore that accurate structure elucidation is unlikely if ion mobility data recorded in one buffer gas is converted into other buffer gases when electronic properties of the buffer gases differ. Graphical Abstract á .
RESUMEN
Here we report the design, implementation, and initial use of an asymmetric steady-state continuous dual-nanospray ion source. This new source design consists of two independently controlled and continuously operating nanospray interfaces with funnel shaped counter electrodes. A steady-state ion mixing region combines the ions from the two sources into a single ion beam in the intermediate region after ion extraction from the nanospray sources but before the bulk of the pressure gradient of the vacuum interface. With this design we have achieved robust mixing of ions with no loss of duty cycle and remarkable ionization characteristics that appear entirely noncompetitive and potentially beneficial. This allows continuous introduction of internal mass calibration ions during a liquid chromatography-mass spectrometric analysis. This in turn allows for recalibration of individual spectra yielding sub part per million mass accuracy throughout the run. The steady-state approach presented here has several advantages over previous approaches. Since neither the voltage nor positions of the sprayers are changed, the nanospray has greater spray stability. The ions produced by the analyte sprayer are continuously sampled, as opposed to time-sharing which necessitates that the analyte ion stream be interrupted for some part of the duty cycle. There are no moving parts, no rapid changes to high voltages requiring additional control electronics, and no need for completely separate vacuum interfaces and the associated complexity. The sprayers are independently controlled and do not exhibit competition or mutual ionization suppression. This novel source has been implemented with a Bruker Apex II 9.4 T FTICR with a modified Apollo electrospray ion source as part of a nanoflow liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry analysis platform. Because of the low cost of implementation, the new source could potentially be applied to other forms of mass spectrometry, such as electrospray ionization-time-of-flight (ESI-TOF), which can benefit from internal mass calibration.