Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(10): e2316675121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422021

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that regulates electrolyte and fluid balance in epithelial tissues. While activation of CFTR is vital to treating cystic fibrosis, selective inhibition of CFTR is a potential therapeutic strategy for secretory diarrhea and autosomal dominant polycystic kidney disease. Although several CFTR inhibitors have been developed by high-throughput screening, their modes of action remain elusive. In this study, we determined the structure of CFTR in complex with the inhibitor CFTRinh-172 to an overall resolution of 2.7 Å by cryogenic electron microscopy. We observe that CFTRinh-172 binds inside the pore near transmembrane helix 8, a critical structural element that links adenosine triphosphate hydrolysis with channel gating. Binding of CFTRinh-172 stabilizes a conformation in which the chloride selectivity filter is collapsed, and the pore is blocked from the extracellular side of the membrane. Single-molecule fluorescence resonance energy transfer experiments indicate that CFTRinh-172 inhibits channel gating without compromising nucleotide-binding domain dimerization. Together, these data reconcile previous biophysical observations and provide a molecular basis for the activity of this widely used CFTR inhibitor.


Asunto(s)
Adenosina Trifosfato , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Tiazolidinas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Dimerización , Benzoatos
2.
Infect Immun ; 87(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30936156

RESUMEN

Group A Streptococcus (GAS) (Streptococcus pyogenes) is an important human pathogen associated with significant global morbidity and mortality for which there is no safe and efficacious vaccine. The T antigen, a protein that polymerizes to form the backbone of the GAS pilus structure, is a potential vaccine candidate. Previous surveys of the tee gene, which encodes the T antigen, have identified 21 different tee types and subtypes such that any T antigen-based vaccine must be multivalent and carefully designed to provide broad strain coverage. In this study, the crystal structures of three two-domain T antigens (T3.2, T13, and T18.1) were determined and found to have remarkable structural similarity to the previously reported T1 antigen, despite moderate overall sequence similarity. This has enabled reliable modeling of all major two-domain T antigens to reveal that T antigen sequence variation is distributed along the full length of the protein and shields a highly conserved core. Immunoassays performed with sera from immunized animals and commercial T-typing sera identified a significant cross-reactive antibody response between T18.1, T18.2, T3.2, and T13. The existence of shared epitopes between T antigens, combined with the remarkably conserved structure and high level of surface sequence divergence, has important implications for the design of multivalent T antigen-based vaccines.


Asunto(s)
Antígenos Bacterianos/inmunología , Infecciones Estreptocócicas/inmunología , Vacunas Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Reacciones Cruzadas , Humanos , Conejos , Infecciones Estreptocócicas/genética , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/prevención & control , Vacunas Estreptocócicas/química , Vacunas Estreptocócicas/genética , Streptococcus pyogenes/química , Streptococcus pyogenes/genética
3.
PLoS Pathog ; 13(9): e1006549, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28880913

RESUMEN

Staphylococcus aureus is an opportunistic pathogen that produces many virulence factors. Two major families of which are the staphylococcal superantigens (SAgs) and the Staphylococcal Superantigen-Like (SSL) exoproteins. The former are immunomodulatory toxins that induce a Vß-specific activation of T cells, while the latter are immune evasion molecules that interfere with a wide range of innate immune defences. The superantigenic properties of Staphylococcal enterotoxin-like X (SElX) have recently been established. We now reveal that SElX also possesses functional characteristics of the SSLs. A region of SElX displays high homology to the sialyl-lactosamine (sLacNac)-specific binding site present in a sub-family of SSLs. By analysing the interaction of SElX with sLacNac-containing glycans we show that SElX has an equivalent specificity and host cell binding range to the SSLs. Mutation of key amino acids in this conserved region affects the ability of SElX to bind to cells of myeloid origin and significantly reduces its ability to protect S. aureus from destruction in a whole blood killing (WBK) assay. Like the SSLs, SElX is up-regulated early during infection and is under the control of the S. aureus exotoxin expression (Sae) two component gene regulatory system. Additionally, the structure of SElX in complex with the sLacNac-containing tetrasaccharide sialyl Lewis X (sLeX) reveals that SElX is a unique single-domain SAg. In summary, SElX is an 'SSL-like' SAg.


Asunto(s)
Enterotoxinas/metabolismo , Exotoxinas/metabolismo , Evasión Inmune/inmunología , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Factores de Virulencia/metabolismo , Animales , Células Cultivadas , Humanos , Ratones , Infecciones Estafilocócicas/inmunología , Superantígenos/genética , Factores de Virulencia/genética
4.
Inorg Chem ; 57(22): 14386-14395, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30378421

RESUMEN

In order to respond to external stimuli, bacteria have evolved sensor proteins linking external signals to intracellular outputs that can then regulate downstream pathways and phenotypes. Globin coupled sensor proteins (GCSs) serve to link environmental O2 levels to cellular processes by coupling a heme-containing sensor globin domain to a catalytic output domain. However, the mechanism by which O2 binding activates these proteins is currently unknown. To provide insights into the signaling mechanism, two distinct dimeric complexes of the isolated globin domain of the GCS from Bordetella pertussis ( BpeGlobin) were solved via X-ray crystallography in which differences in ligand-bound states were observed. Both monomers of one dimer contain Fe(II)-O2 states, while the other dimer consists of the Fe(III)-H2O and Fe(II)-O2 states. These data provide the first molecular insights into the heme pocket conformation of the active Fe(II)-O2 form of these enzymes. In addition, heme distortion modes and heme-protein interactions were found to correlate with the ligation state of the globin, suggesting that these conformational changes play a role in O2-dependent signaling. Fourier transform infrared spectroscopy (FTIR) of the full-length GCS from B. pertussis ( BpeGReg) and the closely related GCS from Pectobacterium carotovorum ssp. carotovorum ( PccGCS) confirmed the importance of an ordered water within the heme pocket and two distal residues (Tyr43 and Ser68) as hydrogen-bond donors. Taken together, this work provides mechanistic insights into BpeGReg O2 sensing and the signaling mechanisms of diguanylate cyclase-containing GCS proteins.

5.
Exp Cell Res ; 342(1): 52-61, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26886577

RESUMEN

Ferritin is a sub-family of iron binding proteins that form multi-subunit nanotype iron storage structures and prevent oxidative stress induced apoptosis. Here we describe the identification and characterization of human ferritin, heavy polypeptide 1 (FTH1) as a suppressor of the pro-apoptotic murine Bax sequence in yeast. In addition we demonstrate that FTH1 is a general pro-survival sequence since it also prevents the cell death inducing effects of copper when heterologously expressed in yeast. Although ferritins are phylogenetically widely distributed and are present in most species of Bacteria, Archaea and Eukarya, ferritin is conspicuously absent in most fungal species including Saccharomyces cerevisiae. An in silico analysis of the yeast proteome lead to the identification of the 161 residue RGI1 (YER067W) encoded protein as a candidate for being a yeast ferritin. In addition to sharing 20% sequence identity with the 183 residue FTH1, RGI1 also has similar pro-survival properties as ferritin when overexpressed in yeast. Analysis of recombinant protein by SDS-PAGE and by electron microscopy revealed the expected formation of higher-order structures for FTH1 that was not observed with Rgi1p. Further analysis revealed that cells overexpressing RGI1 do not show increased resistance to iron toxicity and do not have enhanced capacity to store iron. In contrast, cells lacking RGI1 were found to be hypersensitive to the toxic effects of iron. Overall, our results suggest that Rgi1p is a novel pro-survival protein whose function is not related to ferritin but nevertheless it may have a role in regulating yeast sensitivity to iron stress.


Asunto(s)
Sulfato de Cobre/farmacología , Ferritinas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Proteína X Asociada a bcl-2/fisiología , Secuencia de Aminoácidos , Animales , Cloruros/farmacología , Compuestos Férricos/farmacología , Ferritinas/química , Humanos , Ratones , Viabilidad Microbiana , Datos de Secuencia Molecular , Oxidorreductasas , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido , Estrés Fisiológico
6.
Proc Natl Acad Sci U S A ; 111(4): 1367-72, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24344302

RESUMEN

Gram-positive bacteria are decorated by a variety of proteins that are anchored to the cell wall and project from it to mediate colonization, attachment to host cells, and pathogenesis. These proteins, and protein assemblies, such as pili, are typically long and thin yet must withstand high levels of mechanical stress and proteolytic attack. The recent discovery of intramolecular isopeptide bond cross-links, formed autocatalytically, in the pili from Streptococcus pyogenes has highlighted the role that such cross-links can play in stabilizing such structures. We have investigated a putative cell-surface adhesin from Clostridium perfringens comprising an N-terminal adhesin domain followed by 11 repeat domains. The crystal structure of a two-domain fragment shows that each domain has an IgG-like fold and contains an unprecedented ester bond joining Thr and Gln side chains. MS confirms the presence of these bonds. We show that the bonds form through an autocatalytic intramolecular reaction catalyzed by an adjacent His residue in a serine protease-like mechanism. Two buried acidic residues assist in the reaction. By mutagenesis, we show that loss of the ester bond reduces the thermal stability drastically and increases susceptibility to proteolysis. As in pilin domains, the bonds are placed at a strategic position joining the first and last strands, even though the Ig fold type differs. Bioinformatic analysis suggests that similar domains and ester bond cross-links are widespread in Gram-positive bacterial adhesins.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Clostridium perfringens/metabolismo , Glicina/metabolismo , Inmunoglobulinas/metabolismo , Treonina/metabolismo , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Biocatálisis , Ésteres/química , Modelos Moleculares , Mutagénesis , Conformación Proteica
7.
J Biol Chem ; 289(1): 177-89, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24220033

RESUMEN

The human pathogen Streptococcus pyogenes produces pili that are essential for adhesion to host surface receptors. Cpa, the adhesin at the pilus tip, was recently shown to have a thioester-containing domain. The thioester bond is believed to be important in adhesion, implying a mechanism of covalent attachment analogous to that used by human complement factors. Here, we have characterized a second active thioester-containing domain on Cpa, the N-terminal domain of Cpa (CpaN). Expression of CpaN in Escherichia coli gave covalently linked dimers. These were shown by x-ray crystallography and mass spectrometry to comprise two CpaN molecules cross-linked by the polyamine spermidine following reaction with the thioester bonds. This cross-linked CpaN dimer provides a model for the covalent attachment of Cpa to target receptors and thus the streptococcal pilus to host cells. Similar thioester domains were identified in cell wall proteins of other Gram-positive pathogens, suggesting that thioester domains are more widely used and provide a mechanism of adhesion by covalent bonding to target molecules on host cells that mimics that used by the human complement system to eliminate pathogens.


Asunto(s)
Adhesinas Bacterianas/química , Fimbrias Bacterianas/química , Modelos Moleculares , Multimerización de Proteína , Streptococcus pyogenes/química , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Secuencia de Bases , Proteínas del Sistema Complemento/química , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Cristalografía por Rayos X , Escherichia coli , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Humanos , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidad
8.
Biochem Soc Trans ; 43(5): 787-94, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26517883

RESUMEN

The ability of bacteria to adhere to other cells or to surfaces depends on long, thin adhesive structures that are anchored to their cell walls. These structures include extended protein oligomers known as pili and single, multi-domain polypeptides, mostly based on multiple tandem Ig-like domains. Recent structural studies have revealed the widespread presence of covalent cross-links, not previously seen within proteins, which stabilize these domains. The cross-links discovered so far are either isopeptide bonds that link lysine side chains to the side chains of asparagine or aspartic acid residues or ester bonds between threonine and glutamine side chains. These bonds appear to be formed by spontaneous intramolecular reactions as the proteins fold and are strategically placed so as to impart considerable mechanical strength.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Bacterias Grampositivas/fisiología , Modelos Moleculares , Adhesinas Bacterianas/química , Asparagina/química , Ácido Aspártico/química , Adhesión Bacteriana , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Glutamina/química , Lisina/química , Conformación Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Treonina/química
9.
Biopolymers ; 104(1): 37-45, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25523549

RESUMEN

The chemical synthesis of analogue of a novel γ-secretase activating protein, which may play a pivotal role in the formation of amyloid peptides, the precursor to Alzheimer's disease, is described. The linear polypeptide sequence, consisting of 121 amino acids was assembled from four unprotected peptide building blocks using a convergent ligation-based synthesis. A strategic mutation of three glutamine residues to cysteine enabled the ligations, and the cysteines were subsequently converted to pseudoglutamines, to mimic the native glutamine. The full length unfolded protein was obtained in milligram amounts and was demonstrated to be homogeneous by liquid chromatography and mass spectrometry.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Glutamina/química , Péptidos beta-Amiloides/química , Ligadura , Fragmentos de Péptidos/química
10.
Traffic ; 13(4): 520-31, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22268381

RESUMEN

RNA-dependent RNA polymerase activity is required for RNA interference (RNAi) in many lower eukaryotes including the fission yeast Schizosacchromyces pombe. Together with Ago1 and Dcr1, the RNA-dependent RNA polymerase Rdp1 is critical for RNA-dependent transcriptional- and post-transcriptional gene silencing. Although the bulk of Rdp1 is localized to the nucleus, Ago1 and Dcr1 are primarily cytoplasmic. This may reflect the fact that Rdp1 is required early in the RNAi pathway to generate double strand RNA from transcripts that originate from centromeric loci. The relatively large size of Rdp1 (139.4 kD) precludes passive diffusion of the enzyme into the nucleus suggesting that karyopherin-dependent transport is involved in nuclear targeting of this enzyme. In this study, we report that the karyopherin/importin ß3 homolog Sal3 is required for nuclear import of Rdp1 in S. pombe. Loss of nuclear Rdp1 was associated with substantially reduced transcriptional gene silencing, and surprisingly, post-transcriptional gene silencing which occurs in the cytoplasm of other eukaryotes, was also significantly affected. Together, these results identify Sal3 as a modulator of RNAi-dependent transcriptional gene silencing as well as a potential link between nuclear import and post-transcriptional gene silencing.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Carioferinas/metabolismo , Saccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transporte Activo de Núcleo Celular , ARN Interferente Pequeño/metabolismo , Saccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal
11.
Infect Immun ; 82(7): 2949-57, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24778112

RESUMEN

Group A streptococcus (GAS; Streptococcus pyogenes) is a Gram-positive human pathogen that causes a broad range of diseases ranging from acute pharyngitis to the poststreptococcal sequelae of acute rheumatic fever. GAS pili are highly diverse, long protein polymers that extend from the cell surface. They have multiple roles in infection and are promising candidates for vaccine development. This study describes the structure of the T6 backbone pilin (BP; Lancefield T-antigen) from the important M6 serotype. The structure reveals a modular arrangement of three tandem immunoglobulin-like domains, two with internal isopeptide bonds. The T6 pilin lysine, essential for polymerization, is located in a novel VAKS motif that is structurally homologous to the canonical YPKN pilin lysine in other three- and four-domain Gram-positive pilins. The T6 structure also highlights a conserved pilin core whose surface is decorated with highly variable loops and extensions. Comparison to other Gram-positive BPs shows that many of the largest variable extensions are found in conserved locations. Studies with sera from patients diagnosed with GAS-associated acute rheumatic fever showed that each of the three T6 domains, and the largest of the variable extensions (V8), are targeted by IgG during infection in vivo. Although the GAS BP show large variations in size and sequence, the modular nature of the pilus proteins revealed by the T6 structure may aid the future design of a pilus-based vaccine.


Asunto(s)
Proteínas Fimbrias/metabolismo , Fiebre Reumática/inmunología , Streptococcus pyogenes/metabolismo , Secuencias de Aminoácidos , Clonación Molecular , Cristalización , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Modelos Moleculares , Conformación Proteica , Fiebre Reumática/microbiología , Serotipificación , Streptococcus pyogenes/genética
12.
J Inorg Biochem ; 258: 112638, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38878680

RESUMEN

Bacteria use the second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) to control biofilm formation and other key phenotypes in response to environmental signals. Changes in oxygen levels can alter c-di-GMP signaling through a family of proteins termed globin coupled sensors (GCS) that contain diguanylate cyclase domains. Previous studies have found that GCS diguanylate cyclase activity is controlled by ligand binding to the heme within the globin domain, with oxygen binding resulting in the greatest increase in catalytic activity. Herein, we present evidence that heme-edge residues control O2-dependent signaling in PccGCS, a GCS protein from Pectobacterium carotovorum, by modulating heme distortion. Using enzyme kinetics, resonance Raman spectroscopy, small angle X-ray scattering, and multi-wavelength analytical ultracentrifugation, we have developed an integrated model of the full-length PccGCS tetramer and have identified conformational changes associated with ligand binding, heme conformation, and cyclase activity. Taken together, these studies provide new insights into the mechanism by which O2 binding modulates activity of diguanylate cyclase-containing GCS proteins.


Asunto(s)
Proteínas Bacterianas , Hemo , Pectobacterium carotovorum , Liasas de Fósforo-Oxígeno , Liasas de Fósforo-Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/química , Hemo/química , Hemo/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pectobacterium carotovorum/enzimología , Conformación Proteica , Oxígeno/química , Oxígeno/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Proteínas de Escherichia coli
13.
Nat Commun ; 15(1): 1310, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346985

RESUMEN

Poly-γ-glutamate tails are a distinctive feature of archaeal, bacterial, and eukaryotic cofactors, including the folates and F420. Despite decades of research, key mechanistic questions remain as to how enzymes successively add glutamates to poly-γ-glutamate chains while maintaining cofactor specificity. Here, we show how poly-γ-glutamylation of folate and F420 by folylpolyglutamate synthases and γ-glutamyl ligases, non-homologous enzymes, occurs via processive addition of L-glutamate onto growing γ-glutamyl chain termini. We further reveal structural snapshots of the archaeal γ-glutamyl ligase (CofE) in action, crucially including a bulged-chain product that shows how the cofactor is retained while successive glutamates are added to the chain terminus. This bulging substrate model of processive poly-γ-glutamylation by terminal extension is arguably ubiquitous in such biopolymerisation reactions, including addition to folates, and demonstrates convergent evolution in diverse species from archaea to humans.


Asunto(s)
Ácido Fólico , Ácido Glutámico , Humanos , Péptido Sintasas/metabolismo , Bacterias/metabolismo , Procesamiento Proteico-Postraduccional
14.
J Struct Biol ; 183(1): 99-104, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23747392

RESUMEN

Streptococcus pyogenes (group A streptococcus [GAS]) is a major human pathogen. Attachment of GAS to host cells depends in large part on pili. These assemblies are built from multiple covalently linked subunits of a backbone protein (FctA), which forms the shaft of the pilus, and two minor pilin proteins, FctB anchoring the pilus to the cell wall and Cpa functioning as the adhesin at the tip. Polymerisation of the pilin subunits is mediated by a specific sortase, which catalyzes the formation of peptide bonds linking successive subunits. An additional gene, SipA, is also essential for GAS pilus polymerisation, but its function remains undefined. Here we report the crystal structure of a truncated SipA protein from GAS, determined at 1.67Å resolution. The structure reveals that SipA has the same core fold as the Escherichia coli type-I signal peptidase (SPase-I), but has a much smaller non-catalytic domain. The truncated protein, which lacks 9 N-terminal residues, forms an arm-swapped dimer in which the C-terminal ß-strand of each monomer crosses over to interact with an N-terminal strand from the other monomer. In addition, there is no peptide binding cleft and significant differences in the putative membrane association region.


Asunto(s)
Proteínas Bacterianas/química , Streptococcus pyogenes/química , Secuencia de Aminoácidos , Clonación Molecular , Dimerización , Fimbrias Bacterianas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Difracción de Rayos X
15.
Virulence ; 14(1): 2180228, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36809931

RESUMEN

Group A Streptococcus (GAS) is a globally important pathogen causing a broad range of human diseases. GAS pili are elongated proteins with a backbone comprised repeating T-antigen subunits, which extend from the cell surface and have important roles in adhesion and establishing infection. No GAS vaccines are currently available, but T-antigen-based candidates are in pre-clinical development. This study investigated antibody-T-antigen interactions to gain molecular insight into functional antibody responses to GAS pili. Large, chimeric mouse/human Fab-phage libraries generated from mice vaccinated with the complete T18.1 pilus were screened against recombinant T18.1, a representative two-domain T-antigen. Of the two Fab identified for further characterization, one (designated E3) was cross-reactive and also recognized T3.2 and T13, while the other (H3) was type-specific reacting with only T18.1/T18.2 within a T-antigen panel representative of the major GAS T-types. The epitopes for the two Fab, determined by x-ray crystallography and peptide tiling, overlapped and mapped to the N-terminal region of the T18.1 N-domain. This region is predicted to be buried in the polymerized pilus by the C-domain of the next T-antigen subunit. However, flow cytometry and opsonophagocytic assays showed that these epitopes were accessible in the polymerized pilus at 37°C, though not at lower temperature. This suggests that there is motion within the pilus at physiological temperature, with structural analysis of a covalently linked T18.1 dimer indicating "knee-joint" like bending occurs between T-antigen subunits to expose this immunodominant region. This temperature dependent, mechanistic flexing provides new insight into how antibodies interact with T-antigens during infection.


Asunto(s)
Antígenos Virales de Tumores , Epítopos Inmunodominantes , Animales , Humanos , Ratones , Epítopos Inmunodominantes/metabolismo , Antígenos Virales de Tumores/metabolismo , Temperatura , Fimbrias Bacterianas/metabolismo , Proteínas Fimbrias/metabolismo , Proteínas Bacterianas/metabolismo , Epítopos , Streptococcus
16.
Acta Crystallogr D Struct Biol ; 79(Pt 11): 971-979, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37860959

RESUMEN

Cell-surface proteins known as adhesins enable bacteria to colonize particular environments, and in Gram-positive bacteria often contain autocatalytically formed covalent intramolecular cross-links. While investigating the prevalence of such cross-links, a remarkable example was discovered in Mobiluncus mulieris, a pathogen associated with bacterial vaginosis. This organism encodes a putative adhesin of 7651 residues. Crystallography and mass spectrometry of two selected domains, and AlphaFold structure prediction of the remainder of the protein, were used to show that this adhesin belongs to the family of thioester, isopeptide and ester-bond-containing proteins (TIE proteins). It has an N-terminal domain homologous to thioester adhesion domains, followed by 51 immunoglobulin (Ig)-like domains containing ester- or isopeptide-bond cross-links. The energetic cost to the M. mulieris bacterium in retaining such a large adhesin as a single gene or protein construct suggests a critical role in pathogenicity and/or persistence.


Asunto(s)
Adhesinas Bacterianas , Mobiluncus , Femenino , Humanos , Mobiluncus/metabolismo , Adhesinas Bacterianas/química , Ésteres/química
17.
Curr Genet ; 58(4): 217-34, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22806395

RESUMEN

In fission yeast and vertebrate cells, Cdc25 phosphatase is the target of checkpoint-mediated response to DNA replication blocks, DNA damage, and extracellular stress. As such, it is a key regulator of cell cycle progress and genomic stability. In fission yeast, phosphorylation of Cdc25 by the checkpoint kinases Cds1 and Chk1 and also Srk1 during stress creates a binding site for the 14-3-3 homolog Rad24; the complex is then exported from the nucleus. Cdc25 contains 12 potential serine/threonine phosphorylation sites that are phosphorylated in vitro by Cds1; 9 reside in the amino terminal half of the protein with the remaining sites are located in the extreme C-terminus. We have previously shown that deletion of the nine amino terminal sites results in degradation of the mutant protein while the checkpoint is enforced by the Mik1 kinase acting on Cdc2 tyrosine-15. Here, we examine the influence of the three C-terminal sites on the negative regulation of Cdc25. These sites are conserved in vertebrates and have been shown to be phosphorylated following DNA damage and replication blocks. We show that these three sites have a role in the negative regulation of Cdc25 following replication arrest, but perhaps more importantly they appear to particularly contribute to regulating the duration, and thus the effectiveness of the arrested state.


Asunto(s)
Daño del ADN , Replicación del ADN , ADN de Hongos/metabolismo , Schizosaccharomyces/metabolismo , Fosfatasas cdc25/metabolismo , Secuencia de Aminoácidos , Animales , Puntos de Control del Ciclo Celular , ADN de Hongos/genética , Humanos , Datos de Secuencia Molecular , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Schizosaccharomyces/genética , Alineación de Secuencia , Fosfatasas cdc25/química , Fosfatasas cdc25/genética
18.
Virulence ; 13(1): 225-240, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35094646

RESUMEN

Streptococcus pyogenes, a leading human pathogen, is responsible for a wide range of diseases, including skin and soft tissue infections and severe invasive diseases. S. pyogenes produces a large arsenal of virulence factors, including several immune evasion factors. We have identified an open reading frame (spy0136) in the S. pyogenes SF370 genome encoding a protein of unknown function. Using recombinant Spy0136 in a pull-down assay with human plasma and ELISA, we have identified four complement proteins (C1r, C1s, C3, and C5) as binding partners. Treatment of the complement proteins with PNGase F abrogated binding to C1s, C3, and C5, indicating glycan-dependent interactions. rSpy0136 inhibited complement-mediated hemolysis and interfered with all three complement pathways in a Wieslab complement assay. Furthermore, rSpy0136 inhibited deposition of the C3b opsonin and the membrane attack complex (MAC) on the surface of S. pyogenes. We therefore named the previously unknown protein 'complement evasion factor' (CEF).An S. pyogenes Δspy0136/cef deletion mutant showed decreased virulence in an in-vitro whole blood killing assay and a Galleria mellonella (wax moth) infection model. Furthermore, an L. lactis spy0136/cef gain-of-function mutant showed increased survival during growth in whole human blood. Analysis of serum samples from patients with invasive S. pyogenes revealed Spy0136/CEF sero-conversion indicating expression during disease. In summary, we have identified a novel S. pyogenes immune evasion factor that binds to several complement proteins to interfere with complement function. This is the first example of a S. pyogenes virulence factor binding to several different target proteins via glycan-dependent interactions.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus pyogenes , Proteínas Bacterianas/metabolismo , Proteínas del Sistema Complemento , Humanos , Evasión Inmune , Streptococcus pyogenes/genética , Factores de Virulencia/metabolismo
19.
Nat Struct Mol Biol ; 29(5): 463-471, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35484234

RESUMEN

The H1 linker histone family is the most abundant group of eukaryotic chromatin-binding proteins. However, their contribution to chromosome structure and function remains incompletely understood. Here we use single-molecule fluorescence and force microscopy to directly visualize the behavior of H1 on various nucleic acid and nucleosome substrates. We observe that H1 coalesces around single-stranded DNA generated from tension-induced DNA duplex melting. Using a droplet fusion assay controlled by optical tweezers, we find that single-stranded nucleic acids mediate the formation of gel-like H1 droplets, whereas H1-double-stranded DNA and H1-nucleosome droplets are more liquid-like. Molecular dynamics simulations reveal that multivalent and transient engagement of H1 with unpaired DNA strands drives their enhanced phase separation. Using eGFP-tagged H1, we demonstrate that inducing single-stranded DNA accumulation in cells causes an increase in H1 puncta that are able to fuse. We further show that H1 and Replication Protein A occupy separate nuclear regions, but that H1 colocalizes with the replication factor Proliferating Cell Nuclear Antigen, particularly after DNA damage. Overall, our results provide a refined perspective on the diverse roles of H1 in genome organization and maintenance, and indicate its involvement at stalled replication forks.


Asunto(s)
Histonas , Nucleosomas , Cromatina , ADN/metabolismo , ADN de Cadena Simple , Histonas/metabolismo , Unión Proteica
20.
J Immunol Methods ; 500: 113194, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801540

RESUMEN

Group A Streptococcus (GAS) is a major human pathogen responsible for superficial infections through to life-threatening invasive disease and the autoimmune sequelae acute rheumatic fever (ARF). Despite a significant global economic and health burden, there is no licensed vaccine available to prevent GAS disease. Several pre-clinical vaccines that target conserved GAS antigens are in development. Assays that measure antigen-specific antibodies are essential for vaccine research. The aim of this study was to develop a multiplex beadbased immunoassay that can detect and quantify antibody responses to multiple GAS antigen targets in small volume blood samples. This builds on our existing triplex assay comprised of antigens used in clinical serology for the diagnosis of ARF (SLO, DNase B and SpnA). Five additional conserved putative GAS vaccine antigens (Spy0843, SCPA, SpyCEP, SpyAD and the Group A carbohydrate), were coupled to spectrally unique beads to form an 8-plex antigen panel. After optimisation of the assay protocol, standard curves were generated, and assessments of assay specificity, precision and reproducibility were conducted. A broad range of antibody (IgG) titres were able to be quickly and accurately quantified from a single serum dilution. Assay utility was assessed using a panel of 62 clinical samples including serum from adults with GAS bacteraemia and children with ARF. Circulating IgG to all eight antigens was elevated in patients with GAS disease (n = 23) compared to age-matched controls (n = 39) (P < 0.05). The feasibility of using dried blood samples to quantify antigen-specific IgG was also demonstrated. In summary, a robust and reproducible 8-plex assay has been developed that simultaneously quantifies IgG antibodies to GAS vaccine and diagnostic antigens.


Asunto(s)
Antígenos Bacterianos/inmunología , Enfermedades Autoinmunes/diagnóstico , Fiebre Reumática/diagnóstico , Pruebas Serológicas/métodos , Infecciones Estreptocócicas/diagnóstico , Vacunas Estreptocócicas/inmunología , Streptococcus pyogenes/fisiología , Adulto , Anticuerpos Antibacterianos/sangre , Enfermedades Autoinmunes/inmunología , Niño , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/sangre , Microesferas , Fiebre Reumática/inmunología , Infecciones Estreptocócicas/inmunología , Desarrollo de Vacunas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA