Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(27): e2406946121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917015

RESUMEN

Progerin, the protein that causes Hutchinson-Gilford progeria syndrome, triggers nuclear membrane (NM) ruptures and blebs, but the mechanisms are unclear. We suspected that the expression of progerin changes the overall structure of the nuclear lamina. High-resolution microscopy of smooth muscle cells (SMCs) revealed that lamin A and lamin B1 form independent meshworks with uniformly spaced openings (~0.085 µm2). The expression of progerin in SMCs resulted in the formation of an irregular meshwork with clusters of large openings (up to 1.4 µm2). The expression of progerin acted in a dominant-negative fashion to disrupt the morphology of the endogenous lamin B1 meshwork, triggering irregularities and large openings that closely resembled the irregularities and openings in the progerin meshwork. These abnormal meshworks were strongly associated with NM ruptures and blebs. Of note, the progerin meshwork was markedly abnormal in nuclear blebs that were deficient in lamin B1 (~50% of all blebs). That observation suggested that higher levels of lamin B1 expression might normalize the progerin meshwork and prevent NM ruptures and blebs. Indeed, increased lamin B1 expression reversed the morphological abnormalities in the progerin meshwork and markedly reduced the frequency of NM ruptures and blebs. Thus, progerin expression disrupts the overall structure of the nuclear lamina, but that effect-along with NM ruptures and blebs-can be abrogated by increased lamin B1 expression.


Asunto(s)
Lamina Tipo A , Lamina Tipo B , Lámina Nuclear , Lámina Nuclear/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Humanos , Progeria/metabolismo , Progeria/genética , Progeria/patología , Animales , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones
2.
Proc Natl Acad Sci U S A ; 121(17): e2322332121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625948

RESUMEN

Apolipoprotein AV (APOA5) lowers plasma triglyceride (TG) levels by binding to the angiopoietin-like protein 3/8 complex (ANGPTL3/8) and suppressing its capacity to inhibit lipoprotein lipase (LPL) catalytic activity and its ability to detach LPL from binding sites within capillaries. However, the sequences in APOA5 that are required for suppressing ANGPTL3/8 activity have never been defined. A clue to the identity of those sequences was the presence of severe hypertriglyceridemia in two patients harboring an APOA5 mutation that truncates APOA5 by 35 residues ("APOA5Δ35"). We found that wild-type (WT) human APOA5, but not APOA5Δ35, suppressed ANGPTL3/8's ability to inhibit LPL catalytic activity. To pursue that finding, we prepared a mutant mouse APOA5 protein lacking 40 C-terminal amino acids ("APOA5Δ40"). Mouse WT-APOA5, but not APOA5Δ40, suppressed ANGPTL3/8's capacity to inhibit LPL catalytic activity and sharply reduced plasma TG levels in mice. WT-APOA5, but not APOA5Δ40, increased intracapillary LPL levels and reduced plasma TG levels in Apoa5-/- mice (where TG levels are high and intravascular LPL levels are low). Also, WT-APOA5, but not APOA5Δ40, blocked the ability of ANGPTL3/8 to detach LPL from cultured cells. Finally, an antibody against a synthetic peptide corresponding to the last 26 amino acids of mouse APOA5 reduced intracapillary LPL levels and increased plasma TG levels in WT mice. We conclude that C-terminal sequences in APOA5 are crucial for suppressing ANGPTL3/8 activity in vitro and for regulating intracapillary LPL levels and plasma TG levels in vivo.


Asunto(s)
Apolipoproteínas , Lipoproteína Lipasa , Ratones , Humanos , Animales , Proteínas Similares a la Angiopoyetina/genética , Proteínas Similares a la Angiopoyetina/metabolismo , Lipoproteína Lipasa/metabolismo , Proteína 3 Similar a la Angiopoyetina , Aminoácidos , Triglicéridos/metabolismo , Apolipoproteína A-V/genética
3.
J Lipid Res ; 65(7): 100578, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38880127

RESUMEN

Apolipoprotein AV (APOA5) deficiency causes hypertriglyceridemia in mice and humans. For years, the cause remained a mystery, but the mechanisms have now come into focus. Here, we review progress in defining APOA5's function in plasma triglyceride metabolism. Biochemical studies revealed that APOA5 binds to the angiopoietin-like protein 3/8 complex (ANGPTL3/8) and suppresses its ability to inhibit the activity of lipoprotein lipase (LPL). Thus, APOA5 deficiency is accompanied by increased ANGPTL3/8 activity and lower levels of LPL activity. APOA5 deficiency also reduces amounts of LPL in capillaries of oxidative tissues (e.g., heart, brown adipose tissue). Cell culture experiments revealed the likely explanation: ANGPTL3/8 detaches LPL from its binding sites on the surface of cells, and that effect is blocked by APOA5. Both the low intracapillary LPL levels and the high plasma triglyceride levels in Apoa5-/- mice are normalized by recombinant APOA5. Carboxyl-terminal sequences in APOA5 are crucial for its function; a mutant APOA5 lacking 40-carboxyl-terminal residues cannot bind to ANGPTL3/8 and lacks the ability to change intracapillary LPL levels or plasma triglyceride levels in Apoa5-/- mice. Also, an antibody against the last 26 amino acids of APOA5 reduces intracapillary LPL levels and increases plasma triglyceride levels in wild-type mice. An inhibitory ANGPTL3/8-specific antibody functions as an APOA5-mimetic reagent, increasing intracapillary LPL levels and lowering plasma triglyceride levels in both Apoa5-/- and wild-type mice. That antibody is a potentially attractive strategy for treating elevated plasma lipid levels in human patients.


Asunto(s)
Apolipoproteína A-V , Hipertrigliceridemia , Lipoproteína Lipasa , Animales , Lipoproteína Lipasa/metabolismo , Lipoproteína Lipasa/genética , Humanos , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/genética , Apolipoproteína A-V/genética , Apolipoproteína A-V/metabolismo , Capilares/metabolismo , Ratones , Triglicéridos/metabolismo , Triglicéridos/sangre
4.
J Lipid Res ; 65(4): 100532, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38608546

RESUMEN

To support in vivo and in vitro studies of intravascular triglyceride metabolism in mice, we created rat monoclonal antibodies (mAbs) against mouse LPL. Two mAbs, mAbs 23A1 and 31A5, were used to develop a sandwich ELISA for mouse LPL. The detection of mouse LPL by the ELISA was linear in concentrations ranging from 0.31 ng/ml to 20 ng/ml. The sensitivity of the ELISA made it possible to quantify LPL in serum and in both pre-heparin and post-heparin plasma samples (including in grossly lipemic samples). LPL mass and activity levels in the post-heparin plasma were lower in Gpihbp1-/- mice than in wild-type mice. In both groups of mice, LPL mass and activity levels were positively correlated. Our mAb-based sandwich ELISA for mouse LPL will be useful for any investigator who uses mouse models to study LPL-mediated intravascular lipolysis.


Asunto(s)
Anticuerpos Monoclonales , Ensayo de Inmunoadsorción Enzimática , Lipoproteína Lipasa , Animales , Lipoproteína Lipasa/metabolismo , Lipoproteína Lipasa/sangre , Ratones , Ensayo de Inmunoadsorción Enzimática/métodos , Anticuerpos Monoclonales/inmunología , Ratas , Receptores de Lipoproteína/metabolismo , Receptores de Lipoproteína/genética , Ratones Noqueados
5.
J Am Chem Soc ; 146(29): 20221-20229, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38985464

RESUMEN

Nanoscale secondary ion mass spectrometry (NanoSIMS) makes it possible to visualize elements and isotopes in a wide range of samples at a high resolution. However, the fidelity and quality of NanoSIMS images often suffer from distortions because of a requirement to acquire and integrate multiple image frames. We developed an optical flow-based algorithm tool, NanoSIMS Stabilizer, for all-channel postacquisition registration of images. The NanoSIMS Stabilizer effectively deals with the distortions and artifacts, resulting in a high-resolution visualization of isotope and element distribution. It is open source with an easy-to-use ImageJ plugin and is accompanied by a Python version with GPU acceleration.

6.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38559079

RESUMEN

The intrinsic pathways that control membrane organization in immune cells and the impact of such pathways on cellular function are not well defined. Here we report that the non-vesicular cholesterol transporter Aster-A links plasma membrane (PM) cholesterol availability in T cells to immune signaling and systemic metabolism. Aster-A is recruited to the PM during T-cell receptor (TCR) activation, where it facilitates the removal of newly generated "accessible" membrane cholesterol. Loss of Aster-A leads to excess PM cholesterol accumulation, resulting in enhanced TCR nano-clustering and signaling, and Th17 cytokine production. Finally, we show that the mucosal Th17 response is restrained by PM cholesterol remodeling. Ablation of Aster-A in T cells leads to enhanced IL-22 production, reduced intestinal fatty acid absorption, and resistance to diet-induced obesity. These findings delineate a multi-tiered regulatory scheme linking immune cell lipid flux to nutrient absorption and systemic physiology.

7.
J Clin Invest ; 134(4)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175723

RESUMEN

Aster proteins mediate the nonvesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER). However, the importance of nonvesicular sterol movement for physiology and pathophysiology in various tissues is incompletely understood. Here we show that loss of Aster-B leads to diet-induced obesity in female but not in male mice, and that this sex difference is abolished by ovariectomy. We further demonstrate that Aster-B deficiency impairs nonvesicular cholesterol transport from the PM to the ER in ovaries in vivo, leading to hypogonadism and reduced estradiol synthesis. Female Aster-B-deficient mice exhibit reduced locomotor activity and energy expenditure, consistent with established effects of estrogens on systemic metabolism. Administration of exogenous estradiol ameliorates the diet-induced obesity phenotype of Aster-B-deficient female mice. These findings highlight the key role of Aster-B-dependent nonvesicular cholesterol transport in regulating estradiol production and protecting females from obesity.


Asunto(s)
Colesterol , Estradiol , Femenino , Ratones , Masculino , Animales , Estradiol/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Obesidad/genética , Obesidad/metabolismo , Dieta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA