Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(30): 8514-9, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27402759

RESUMEN

We and others have shown that embryonic and neonatal fibroblasts can be directly converted into induced neuronal (iN) cells with mature functional properties. Reprogramming of fibroblasts from adult and aged mice, however, has not yet been explored in detail. The ability to generate fully functional iN cells from aged organisms will be particularly important for in vitro modeling of diseases of old age. Here, we demonstrate production of functional iN cells from fibroblasts that were derived from mice close to the end of their lifespan. iN cells from aged mice had apparently normal active and passive neuronal membrane properties and formed abundant synaptic connections. The reprogramming efficiency gradually decreased with fibroblasts derived from embryonic and neonatal mice, but remained similar for fibroblasts from postnatal mice of all ages. Strikingly, overexpression of a transcription factor, forkhead box O3 (FoxO3), which is implicated in aging, blocked iN cell conversion of embryonic fibroblasts, whereas knockout or knockdown of FoxO3 increased the reprogramming efficiency of adult-derived but not of embryonic fibroblasts and also enhanced functional maturation of resulting iN cells. Hence, FoxO3 has a central role in the neuronal reprogramming susceptibility of cells, and the importance of FoxO3 appears to change during development.


Asunto(s)
Envejecimiento , Reprogramación Celular/genética , Proteína Forkhead Box O3/genética , Neuronas/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Proteína Forkhead Box O3/deficiencia , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología
2.
Nat Struct Mol Biol ; 28(9): 762-770, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34518698

RESUMEN

Kinases play central roles in signaling cascades, relaying information from the outside to the inside of mammalian cells. De novo designed protein switches capable of interfacing with tyrosine kinase signaling pathways would open new avenues for controlling cellular behavior, but, so far, no such systems have been described. Here we describe the de novo design of two classes of protein switch that link phosphorylation by tyrosine and serine kinases to protein-protein association. In the first class, protein-protein association is required for phosphorylation by the kinase, while in the second class, kinase activity drives protein-protein association. We design systems that couple protein binding to kinase activity on the immunoreceptor tyrosine-based activation motif central to T-cell signaling, and kinase activity to reconstitution of green fluorescent protein fluorescence from fragments and the inhibition of the protease calpain. The designed switches are reversible and function in vitro and in cells with up to 40-fold activation of switching by phosphorylation.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Secuencias de Aminoácidos , Unión Competitiva , Proteínas de Unión al Calcio/farmacología , Calpaína/antagonistas & inhibidores , Calpaína/metabolismo , Catálisis , Dominio Catalítico , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diseño de Fármacos , Genes Sintéticos , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Fosforilación , Fosfotirosina/metabolismo , Unión Proteica , Conformación Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Relación Estructura-Actividad , Familia-src Quinasas/metabolismo
3.
Neuron ; 103(4): 617-626.e6, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31257103

RESUMEN

The autism-associated synaptic-adhesion gene Neuroligin-4 (NLGN4) is poorly conserved evolutionarily, limiting conclusions from Nlgn4 mouse models for human cells. Here, we show that the cellular and subcellular expression of human and murine Neuroligin-4 differ, with human Neuroligin-4 primarily expressed in cerebral cortex and localized to excitatory synapses. Overexpression of NLGN4 in human embryonic stem cell-derived neurons resulted in an increase in excitatory synapse numbers but a remarkable decrease in synaptic strength. Human neurons carrying the syndromic autism mutation NLGN4-R704C also formed more excitatory synapses but with increased functional synaptic transmission due to a postsynaptic mechanism, while genetic loss of NLGN4 did not significantly affect synapses in the human neurons analyzed. Thus, the NLGN4-R704C mutation represents a change-of-function mutation. Our work reveals contrasting roles of NLGN4 in human and mouse neurons, suggesting that human evolution has impacted even fundamental cell biological processes generally assumed to be highly conserved.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/fisiología , Transmisión Sináptica/fisiología , Animales , Trastorno Autístico/genética , Moléculas de Adhesión Celular Neuronal/genética , Células Cultivadas , Corteza Cerebral/fisiología , Células Madre Embrionarias/citología , Potenciales Postsinápticos Excitadores/fisiología , Genes Reporteros , Ácido Glutámico/fisiología , Humanos , Ratones , Potenciales Postsinápticos Miniatura/fisiología , Mutación Missense , Neurogénesis , Neuronas/fisiología , Fenotipo , Receptores de Glutamato/fisiología , Especificidad de la Especie , Sinapsis/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA