Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 2529, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781944

RESUMEN

Turbulence is a complex phenomenon that has a chaotic nature with multiple spatio-temporal scales, making predictions of turbulent flows a challenging topic. Nowadays, an abundance of high-fidelity databases can be generated by experimental measurements and numerical simulations, but obtaining such accurate data in full-scale applications is currently not possible. This motivates utilising deep learning on subsets of the available data to reduce the required cost of reconstructing the full flow in such full-scale applications. Here, we develop a generative-adversarial-network (GAN)-based model to reconstruct the three-dimensional velocity fields from flow data represented by a cross-plane of unpaired two-dimensional velocity observations. The model could successfully reconstruct the flow fields with accurate flow structures, statistics and spectra. The results indicate that our model can be successfully utilised for reconstructing three-dimensional flows from two-dimensional experimental measurements. Consequently, a remarkable reduction in the complexity of the experimental setup and the storage cost can be achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA