Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(5): 4572-4578, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38247378

RESUMEN

Using a three-dimensional classical ensemble model, nonsequential double ionization (NSDI) of Ar atoms by counter-rotating two-color elliptical polarization (TCEP) fields is investigated. The major axes of the two elliptical fields are aligned in different directions. The relative alignment of the two elliptical fields strongly affects the waveform of the combined electric field and the ultrafast dynamics of NSDI in TCEP fields. Numerical results show that the correlated electron momentum distributions in the x direction evolve from a V-shaped structure near the axis to a distribution concentrated on the diagonal with the angle between the two elliptical major axes increasing. The asymmetry of the energy sharing between the two electrons during recollision results in the V-shaped structure in the correlated momentum spectrum. Back analysis indicates that the recollision times of a part of the trajectories move from the peak to the valley of the combined electric field with the angle between the two elliptical major axes increasing. Therefore, for the case of a larger angle between the two elliptical major axes, the electrons experience a longer time to escape away from the vicinity of the parent ion and thus the stronger Coulomb effect from the parent ion makes the momentum difference between two electrons small, which results in a distribution concentrated on the diagonal. This provides an effective avenue to control the electron ultrafast dynamics in NSDI.

2.
J Chem Phys ; 160(11)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38488076

RESUMEN

We experimentally study two-body Coulomb explosions of CO2, O2, and CH3Cl molecules in intense femtosecond laser pulses. We observe an obvious variation in the ionic angular distribution of the fragments with respect to the kinetic energy releases (KERs). Using a classical model based on ab initio potential energy curves, we find that the dependence of the ionic angular distribution on the KER is relevant to the fact that the accurate potential energy deviates significantly from the value determined by applying the Coulomb interaction approximation at a relatively small internuclear distance of the molecule. We show that the KER-dependent ionic angular distribution provides an effective way to determine the critical internuclear distance at which the Coulomb interaction approximation holds or breaks down without relying on the knowledge of the accurate potential energy curves.

3.
Opt Express ; 30(10): 15951-15962, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221449

RESUMEN

With a three-dimensional classical ensemble method, we theoretically investigated the correlated electron dynamics in nonsequential double ionization (NSDI) driven by the spatially inhomogeneous fields. Our results show that NSDI in the spatially inhomogeneous fields is more efficient than that in the spatially homogeneous fields at the low laser intensities, while at the high intensities NSDI is suppressed as compared to the homogeneous fields. More interestingly, our results show that the electron pairs from NSDI exhibit a much stronger angular correlation in the spatially inhomogeneous fields, especially at the higher laser intensities. The correlated electron momentum distribution shows that in the inhomogeneous fields the electron pairs favor to achieve the same final momentum, and the distributions dominantly are clustered in the more compact regions. It is shown that the electron's momentum is focused by the inhomogeneous fields. The underlying dynamics is revealed by back-tracing the classical trajectories.

4.
Opt Express ; 28(5): 7341-7349, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32225964

RESUMEN

With a three-dimensional classical ensemble method, we theoretically investigated frustrated double ionization (FDI) of atoms with different laser wavelengths. Our results show that FDI can be more efficiently generated with shorter wavelengths and lower laser intensities. With proper laser parameters more FDI events can be generated than normal double ionization events. The physical condition under which FDI events happen is identified and explained. The energy distribution of the FDI products - atomic ions in highly excited states - shows a sensitive wavelength dependency.

5.
Nanotechnology ; 28(24): 245604, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28540865

RESUMEN

Graphene nanomeshes (GNMs), new graphene nanostructures with tunable bandgaps, are potential building blocks for future electronic or photonic devices, and energy storage and conversion materials. In previous works, GNMs have been successfully prepared on Cu foils by the H2 etching effect. In this paper, we investigated the effect of Ar on the preparation of GNMs, and how the mean density and shape of them vary with growth time. In addition, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM) revealed the typical hexagonal structure of GNM. Atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS) indicated that large copper oxide nanoparticles produced by oxidization in purified Ar can play an essential catalytic role in preparing GNMs. Then, we exhibited the key reaction details for each growth process and proposed a growth mechanism of GNMs in purified Ar.

6.
Opt Express ; 24(6): 6469-79, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27136838

RESUMEN

Using a classical ensemble method, we revisit the topic of recollision and nonsequential double ionization with elliptically polarized laser fields. We focus on how the recollision mechanism transitions from short trajectories with linear polarization to long trajectories with elliptical polarization. We propose how this transition can be observed by meansuring the carrier-envelop-phase dependence of the correlated electron momentum spectra using currently available few-cycle laser pulses.

7.
J Phys Condens Matter ; 32(41): 415607, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32575090

RESUMEN

Systematic ac susceptibility measurements have been carried out to study the vortex dynamics in CaKFe4As4 and Ba0.6K0.4Fe2As2 single crystals under various temperatures, dc magnetic fields, ac field frequencies and amplitudes. The field-temperature phase diagrams were shown, and the characteristics of irreversibility line were also derived. The specific expressions of activation energy on the parameters of temperature (T), current density (J), and dc magnetic field (H) are obtained according to these data. The results indicate that both superconductors have similar functional expressions of activation energy and flux pinning behaviors. Though both CaKFe4As4 and Ba0.6K0.4Fe2As2 superconductors exhibit very strong flux pinning ability, the vortex pinning potential in CaKFe4As4 is slightly smaller than that in Ba0.6K0.4Fe2As2, which may result from its distorted FeAs4-tetrahedron in CaKFe4As4. The depinning critical current densities at the limit of low temperature and low field were also extrapolated, yielding the corresponding values of J c0(0) ∼ 1.0 × 108 and 2.2 × 108 A cm-2 for CaKFe4As4 and Ba0.6K0.4Fe2As2 superconductors, respectively, which suggest potential applications.

8.
Sci Rep ; 6: 37413, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27857182

RESUMEN

Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the final energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA