Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Exp Metastasis ; 41(3): 187-198, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38430319

RESUMEN

Brain metastasis, characterized by poor clinical outcomes, is a devastating disease. Despite significant mechanistic and therapeutic advances in recent years, pivotal improvements in clinical interventions have remained elusive. The heterogeneous nature of the primary tumor of origin, complications in drug delivery across the blood-brain barrier, and the distinct microenvironment collectively pose formidable clinical challenges in developing new treatments for patients with brain metastasis. Although current preclinical models have deepened our basic understanding of the disease, much of the existing research on brain metastasis has employed a reductionist approach. This approach, which often relies on either in vitro systems or in vivo injection models in young and treatment-naive mouse models, does not give sufficient consideration to the clinical context. Given the translational importance of brain metastasis research, we advocate for the design of preclinical experimental models that take into account these unique clinical challenges and align more closely with current clinical practices. We anticipate that aligning and simulating real-world patient conditions will facilitate the development of more translatable treatment regimens. This brief review outlines the most pressing clinical challenges, the current state of research in addressing them, and offers perspectives on innovative metastasis models and tools aimed at identifying novel strategies for more effective management of clinical brain metastasis.


Asunto(s)
Neoplasias Encefálicas , Investigación Biomédica Traslacional , Neoplasias Encefálicas/secundario , Humanos , Animales , Modelos Animales de Enfermedad , Barrera Hematoencefálica , Microambiente Tumoral , Ratones
2.
Nat Commun ; 15(1): 2132, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459011

RESUMEN

Growth factor receptor-bound protein 2 (GRB2) is a cytoplasmic adapter for tyrosine kinase signaling and a nuclear adapter for homology-directed-DNA repair. Here we find nuclear GRB2 protects DNA at stalled replication forks from MRE11-mediated degradation in the BRCA2 replication fork protection axis. Mechanistically, GRB2 binds and inhibits RAD51 ATPase activity to stabilize RAD51 on stalled replication forks. In GRB2-depleted cells, PARP inhibitor (PARPi) treatment releases DNA fragments from stalled forks into the cytoplasm that activate the cGAS-STING pathway to trigger pro-inflammatory cytokine production. Moreover in a syngeneic mouse metastatic ovarian cancer model, GRB2 depletion in the context of PARPi treatment reduced tumor burden and enabled high survival consistent with immune suppression of cancer growth. Collective findings unveil GRB2 function and mechanism for fork protection in the BRCA2-RAD51-MRE11 axis and suggest GRB2 as a potential therapeutic target and an enabling predictive biomarker for patient selection for PARPi and immunotherapy combination.


Asunto(s)
Replicación del ADN , Neoplasias , Animales , Humanos , Ratones , ADN , Inestabilidad Genómica , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Inmunidad Innata , Proteína Homóloga de MRE11/metabolismo , Neoplasias/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
3.
Nat Commun ; 15(1): 1009, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307859

RESUMEN

Tumor-secreted factors contribute to the development of a microenvironment that facilitates the escape of cancer cells from immunotherapy. In this study, we conduct a retrospective comparison of the proteins secreted by hepatocellular carcinoma (HCC) cells in responders and non-responders among a cohort of ten patients who received Nivolumab (anti-PD-1 antibody). Our findings indicate that non-responders have a high abundance of secreted RNase1, which is associated with a poor prognosis in various cancer types. Furthermore, mice implanted with HCC cells that overexpress RNase1 exhibit immunosuppressive tumor microenvironments and diminished response to anti-PD-1 therapy. RNase1 induces the polarization of macrophages towards a tumor growth-promoting phenotype through activation of the anaplastic lymphoma kinase (ALK) signaling pathway. Targeting the RNase1/ALK axis reprograms the macrophage polarization, with increased CD8+ T- and Th1- cell recruitment. Moreover, simultaneous targeting of the checkpoint protein PD-1 unleashes cytotoxic CD8+ T-cell responses. Treatment utilizing both an ALK inhibitor and an anti-PD-1 antibody exhibits enhanced tumor regression and facilitates long-term immunity. Our study elucidates the role of RNase1 in mediating tumor resistance to immunotherapy and reveals an RNase1-mediated immunosuppressive tumor microenvironment, highlighting the potential of targeting RNase1 as a promising strategy for cancer immunotherapy in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Quinasa de Linfoma Anaplásico , Carcinoma Hepatocelular/metabolismo , Linfocitos T CD8-positivos , Terapia de Inmunosupresión , Neoplasias Hepáticas/metabolismo , Estudios Retrospectivos , Ribonucleasas , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA