RESUMEN
The R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2) increases the risk of Alzheimer's disease (AD). To investigate potential mechanisms, we analyzed knockin mice expressing human TREM2-R47H from one mutant mouse Trem2 allele. TREM2-R47H mice showed increased seizure activity in response to an acute excitotoxin challenge, compared to wildtype controls or knockin mice expressing the common variant of human TREM2. TREM2-R47H also increased spontaneous thalamocortical epileptiform activity in App knockin mice expressing amyloid precursor proteins bearing autosomal dominant AD mutations and a humanized amyloid-ß sequence. In mice with or without such App modifications, TREM2-R47H increased the density of putative synapses in cortical regions without amyloid plaques. TREM2-R47H did not affect synaptic density in hippocampal regions with or without plaques. We conclude that TREM2-R47H increases AD-related network hyperexcitability and that it may do so, at least in part, by causing an imbalance in synaptic densities across brain regions.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Animales , Ratones , Enfermedad de Alzheimer/genética , Alelos , Convulsiones , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Placa Amiloide , Sinapsis , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genéticaRESUMEN
Located within the brain's ventricles, the choroid plexus produces cerebrospinal fluid and forms an important barrier between the central nervous system and the blood. For unknown reasons, the choroid plexus produces high levels of the protein klotho. Here, we show that these levels naturally decline with aging. Depleting klotho selectively from the choroid plexus via targeted viral vector-induced knockout in Klothoflox/flox mice increased the expression of multiple proinflammatory factors and triggered macrophage infiltration of this structure in young mice, simulating changes in unmanipulated old mice. Wild-type mice infected with the same Cre recombinase-expressing virus did not show such alterations. Experimental depletion of klotho from the choroid plexus enhanced microglial activation in the hippocampus after peripheral injection of mice with lipopolysaccharide. In primary cultures, klotho suppressed thioredoxin-interacting protein-dependent activation of the NLRP3 inflammasome in macrophages by enhancing fibroblast growth factor 23 signaling. We conclude that klotho functions as a gatekeeper at the interface between the brain and immune system in the choroid plexus. Klotho depletion in aging or disease may weaken this barrier and promote immune-mediated neuropathogenesis.
Asunto(s)
Envejecimiento/inmunología , Encéfalo/inmunología , Plexo Coroideo/inmunología , Glucuronidasa/inmunología , Envejecimiento/genética , Animales , Femenino , Glucuronidasa/genética , Hipocampo/inmunología , Humanos , Proteínas Klotho , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunologíaRESUMEN
Neural network dysfunction may contribute to functional decline and disease progression in neurodegenerative disorders. Diverse lines of evidence suggest that neuronal accumulation of tau promotes network dysfunction and cognitive decline. The A152T-variant of human tau (hTau-A152T) increases the risk of Alzheimer's disease (AD) and several other tauopathies. When overexpressed in neurons of transgenic mice, it causes age-dependent neuronal loss and cognitive decline, as well as non-convulsive epileptic activity, which is also seen in patients with AD. Using intracranial EEG recordings with electrodes implanted over the parietal cortex, we demonstrate that hTau-A152T increases the power of brain oscillations in the 0.5-6â¯Hz range more than wildtype human tau in transgenic lines with comparable levels of human tau protein in brain, and that genetic ablation of endogenous tau in Mapt-/- mice decreases the power of these oscillations as compared to wildtype controls. Suppression of hTau-A152T production in doxycycline-regulatable transgenic mice reversed their abnormal network activity. Treatment of hTau-A152T mice with the antiepileptic drug levetiracetam also rapidly and persistently reversed their brain dysrhythmia and network hypersynchrony. These findings suggest that both the level and the sequence of tau modulate the power of specific brain oscillations. The potential of EEG spectral changes as a biomarker deserves to be explored in clinical trials of tau-lowering therapeutics. Our results also suggest that levetiracetam treatment is able to counteract tau-dependent neural network dysfunction. Tau reduction and levetiracetam treatment may be of benefit in AD and other conditions associated with brain dysrhythmias and network hypersynchrony.
Asunto(s)
Encéfalo/metabolismo , Ritmo Delta/fisiología , Neuronas/metabolismo , Ritmo Teta/fisiología , Proteínas tau/metabolismo , Animales , Encéfalo/patología , Ondas Encefálicas/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/patologíaRESUMEN
Adenosine A2A receptors are putative therapeutic targets for neurological disorders. The adenosine A2A receptor antagonist istradefylline is approved in Japan for Parkinson's disease and is being tested in clinical trials for this condition elsewhere. A2A receptors on neurons and astrocytes may contribute to Alzheimer's disease (AD) by impairing memory. However, it is not known whether istradefylline enhances cognitive function in aging animals with AD-like amyloid plaque pathology. Here, we show that elevated levels of Aß, C-terminal fragments of the amyloid precursor protein (APP), or amyloid plaques, but not overexpression of APP per se, increase astrocytic A2A receptor levels in the hippocampus and neocortex of aging mice. Moreover, in amyloid plaque-bearing mice, low-dose istradefylline treatment enhanced spatial memory and habituation, supporting the conclusion that, within a well-defined dose range, A2A receptor blockers might help counteract memory problems in patients with Alzheimer's disease.
Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Astrocitos/metabolismo , Encéfalo/efectos de los fármacos , Trastornos de la Memoria , Purinas/farmacología , Envejecimiento , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Animales , Encéfalo/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Placa Amiloide/patología , Receptor de Adenosina A2ARESUMEN
A152T-variant human tau (hTau-A152T) increases risk for tauopathies, including Alzheimer's disease. Comparing mice with regulatable expression of hTau-A152T or wild-type hTau (hTau-WT), we find age-dependent neuronal loss, cognitive impairments, and spontaneous nonconvulsive epileptiform activity primarily in hTau-A152T mice. However, overexpression of either hTau species enhances neuronal responses to electrical stimulation of synaptic inputs and to an epileptogenic chemical. hTau-A152T mice have higher hTau protein/mRNA ratios in brain, suggesting that A152T increases production or decreases clearance of hTau protein. Despite their functional abnormalities, aging hTau-A152T mice show no evidence for accumulation of insoluble tau aggregates, suggesting that their dysfunctions are caused by soluble tau. In human amyloid precursor protein (hAPP) transgenic mice, co-expression of hTau-A152T enhances risk of early death and epileptic activity, suggesting copathogenic interactions between hTau-A152T and amyloid-ß peptides or other hAPP metabolites. Thus, the A152T substitution may augment risk for neurodegenerative diseases by increasing hTau protein levels, promoting network hyperexcitability, and synergizing with the adverse effects of other pathogenic factors.
Asunto(s)
Envejecimiento , Neuronas/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Disfunción Cognitiva/fisiopatología , Modelos Animales de Enfermedad , Demencia Frontotemporal/metabolismo , Humanos , Ratones , Ratones Transgénicos , Tauopatías/genética , Tauopatías/fisiopatología , Proteínas tau/químicaRESUMEN
Amyloid-ß oligomers may cause cognitive deficits in Alzheimer's disease by impairing neuronal NMDA-type glutamate receptors, whose function is regulated by the receptor tyrosine kinase EphB2. Here we show that amyloid-ß oligomers bind to the fibronectin repeats domain of EphB2 and trigger EphB2 degradation in the proteasome. To determine the pathogenic importance of EphB2 depletions in Alzheimer's disease and related models, we used lentiviral constructs to reduce or increase neuronal expression of EphB2 in memory centres of the mouse brain. In nontransgenic mice, knockdown of EphB2 mediated by short hairpin RNA reduced NMDA receptor currents and impaired long-term potentiation in the dentate gyrus, which are important for memory formation. Increasing EphB2 expression in the dentate gyrus of human amyloid precursor protein transgenic mice reversed deficits in NMDA receptor-dependent long-term potentiation and memory impairments. Thus, depletion of EphB2 is critical in amyloid-ß-induced neuronal dysfunction. Increasing EphB2 levels or function could be beneficial in Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Cognición/fisiología , Receptor EphB2/deficiencia , Receptor EphB2/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Línea Celular , Células Cultivadas , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Humanos , Potenciación a Largo Plazo , Memoria/fisiología , Ratones , Ratones Transgénicos , Plasticidad Neuronal , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Receptor EphB2/química , Receptor EphB2/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismoRESUMEN
Aging is the principal demographic risk factor for Alzheimer disease (AD), the most common neurodegenerative disorder. Klotho is a key modulator of the aging process and, when overexpressed, extends mammalian lifespan, increases synaptic plasticity, and enhances cognition. Whether klotho can counteract deficits related to neurodegenerative diseases, such as AD, is unknown. Here we show that elevating klotho expression decreases premature mortality and network dysfunction in human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Increasing klotho levels prevented depletion of NMDA receptor (NMDAR) subunits in the hippocampus and enhanced spatial learning and memory in hAPP mice. Klotho elevation in hAPP mice increased the abundance of the GluN2B subunit of NMDAR in postsynaptic densities and NMDAR-dependent long-term potentiation, which is critical for learning and memory. Thus, increasing wild-type klotho levels or activities improves synaptic and cognitive functions, and may be of therapeutic benefit in AD and other cognitive disorders.
Asunto(s)
Precursor de Proteína beta-Amiloide/fisiología , Cognición/fisiología , Glucuronidasa/fisiología , Longevidad/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Conducta Animal/fisiología , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/psicología , Humanos , Proteínas Klotho , Longevidad/fisiología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Red Nerviosa/patología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/patología , Proteínas tau/metabolismoRESUMEN
In light of the rising prevalence of Alzheimer's disease (AD), new strategies to prevent, halt, and reverse this condition are needed urgently. Perturbations of brain network activity are observed in AD patients and in conditions that increase the risk of developing AD, suggesting that aberrant network activity might contribute to AD-related cognitive decline. Human amyloid precursor protein (hAPP) transgenic mice simulate key aspects of AD, including pathologically elevated levels of amyloid-ß peptides in brain, aberrant neural network activity, remodeling of hippocampal circuits, synaptic deficits, and behavioral abnormalities. Whether these alterations are linked in a causal chain remains unknown. To explore whether hAPP/amyloid-ß-induced aberrant network activity contributes to synaptic and cognitive deficits, we treated hAPP mice with different antiepileptic drugs. Among the drugs tested, only levetiracetam (LEV) effectively reduced abnormal spike activity detected by electroencephalography. Chronic treatment with LEV also reversed hippocampal remodeling, behavioral abnormalities, synaptic dysfunction, and deficits in learning and memory in hAPP mice. Our findings support the hypothesis that aberrant network activity contributes causally to synaptic and cognitive deficits in hAPP mice. LEV might also help ameliorate related abnormalities in people who have or are at risk for AD.
Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Anticonvulsivantes/farmacología , Trastornos del Conocimiento/tratamiento farmacológico , Cognición/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Piracetam/análogos & derivados , Sinapsis/efectos de los fármacos , Enfermedad de Alzheimer/complicaciones , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análisis de Varianza , Animales , Anticonvulsivantes/sangre , Anticonvulsivantes/uso terapéutico , Western Blotting , Trastornos del Conocimiento/etiología , Electroencefalografía , Humanos , Inmunohistoquímica , Levetiracetam , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Red Nerviosa/fisiopatología , Piracetam/sangre , Piracetam/farmacología , Piracetam/uso terapéuticoRESUMEN
Previous studies suggested that the cellular prion protein (PrP(c)) plays a critical role in the pathogenesis of Alzheimer's disease (AD). Specifically, amyloid-ß (Aß) oligomers were proposed to cause synaptic and cognitive dysfunction by binding to PrP(c). To test this hypothesis, we crossed human amyloid precursor protein (hAPP) transgenic mice from line J20 onto a PrP(c)-deficient background. Ablation of PrP(c) did not prevent the premature mortality and abnormal neural network activity typically seen in hAPPJ20 mice. Furthermore, hAPPJ20 mice with or without PrP(c) expression showed comparably robust abnormalities in learning and memory and in other behavioral domains at 6-8 months of age. Notably, these abnormalities are not refractory to therapeutic manipulations in general: they can be effectively prevented by interventions that prevent Aß-dependent neuronal dysfunction also in other lines of hAPP transgenic mice. Thus, at least in this model, PrP(c) is not an important mediator of Aß-induced neurological impairments.
Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/prevención & control , Proteínas PrPSc/metabolismo , Factores de Edad , Péptidos beta-Amiloides/metabolismo , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Distribución de Chi-Cuadrado , Trastornos del Conocimiento/mortalidad , Trastornos del Conocimiento/fisiopatología , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Conducta Exploratoria/fisiología , Humanos , Estimación de Kaplan-Meier , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Fragmentos de Péptidos/metabolismo , Proteínas PrPSc/genéticaRESUMEN
Alzheimer's disease (AD), the most common neurodegenerative disorder, is a growing public health problem and still lacks effective treatments. Recent evidence suggests that microtubule-associated protein tau may mediate amyloid-ß peptide (Aß) toxicity by modulating the tyrosine kinase Fyn. We showed previously that tau reduction prevents, and Fyn overexpression exacerbates, cognitive deficits in human amyloid precursor protein (hAPP) transgenic mice overexpressing Aß. However, the mechanisms by which Aß, tau, and Fyn cooperate in AD-related pathogenesis remain to be fully elucidated. Here we examined the synaptic and network effects of this pathogenic triad. Tau reduction prevented cognitive decline induced by synergistic effects of Aß and Fyn. Tau reduction also prevented synaptic transmission and plasticity deficits in hAPP mice. Using electroencephalography to examine network effects, we found that tau reduction prevented spontaneous epileptiform activity in multiple lines of hAPP mice. Tau reduction also reduced the severity of spontaneous and chemically induced seizures in mice overexpressing both Aß and Fyn. To better understand these protective effects, we recorded whole-cell currents in acute hippocampal slices from hAPP mice with and without tau. hAPP mice with tau had increased spontaneous and evoked excitatory currents, reduced inhibitory currents, and NMDA receptor dysfunction. Tau reduction increased inhibitory currents and normalized excitation/inhibition balance and NMDA receptor-mediated currents in hAPP mice. Our results indicate that Aß, tau, and Fyn jointly impair synaptic and network function and suggest that disrupting the copathogenic relationship between these factors could be of therapeutic benefit.
Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/fisiología , Trastornos del Conocimiento/fisiopatología , Red Nerviosa/fisiología , Proteínas Proto-Oncogénicas c-fyn/fisiología , Sinapsis/fisiología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/mortalidad , Animales , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/psicología , Modelos Animales de Enfermedad , Electroencefalografía , Femenino , Hipocampo/fisiopatología , Técnicas In Vitro , Masculino , Ratones , Ratones Mutantes , Plasticidad Neuronal , Convulsiones/metabolismo , Convulsiones/fisiopatología , Especificidad de la Especie , Transmisión Sináptica , Proteínas tau/genéticaRESUMEN
Intracellular accumulation of TAU aggregates is a hallmark of several neurodegenerative diseases. However, global genetic reduction of TAU is beneficial also in models of other brain disorders that lack such TAU pathology, suggesting a pathogenic role of nonaggregated TAU. Here, conditional ablation of TAU in excitatory, but not inhibitory, neurons reduced epilepsy, sudden unexpected death in epilepsy, overactivation of the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway, brain overgrowth (megalencephaly), and autism-like behaviors in a mouse model of Dravet syndrome, a severe epileptic encephalopathy of early childhood. Furthermore, treatment with a TAU-lowering antisense oligonucleotide, initiated on postnatal day 10, had similar therapeutic effects in this mouse model. Our findings suggest that excitatory neurons are the critical cell type in which TAU has to be reduced to counteract brain dysfunctions associated with Dravet syndrome and that overall cerebral TAU reduction could have similar benefits, even when initiated postnatally.
Asunto(s)
Trastorno Autístico , Epilepsias Mioclónicas , Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Proteínas tau , Animales , Trastorno Autístico/complicaciones , Trastorno Autístico/genética , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/complicaciones , Epilepsias Mioclónicas/genética , Epilepsia/complicaciones , Epilepsia/genética , Epilepsia/metabolismo , Síndromes Epilépticos , Humanos , Lactante , Ratones , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Espasmos Infantiles , Proteínas tau/metabolismoRESUMEN
Neural network dysfunction may play an important role in Alzheimer's disease (AD). Neuronal circuits vulnerable to AD are also affected in human amyloid precursor protein (hAPP) transgenic mice. hAPP mice with high levels of amyloid-beta peptides in the brain develop AD-like abnormalities, including cognitive deficits and depletions of calcium-related proteins in the dentate gyrus, a region critically involved in learning and memory. Here, we report that hAPP mice have spontaneous nonconvulsive seizure activity in cortical and hippocampal networks, which is associated with GABAergic sprouting, enhanced synaptic inhibition, and synaptic plasticity deficits in the dentate gyrus. Many Abeta-induced neuronal alterations could be simulated in nontransgenic mice by excitotoxin challenge and prevented in hAPP mice by blocking overexcitation. Aberrant increases in network excitability and compensatory inhibitory mechanisms in the hippocampus may contribute to Abeta-induced neurological deficits in hAPP mice and, possibly, also in humans with AD.
Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Trastornos del Conocimiento/fisiopatología , Giro Dentado/fisiopatología , Epilepsia/fisiopatología , Inhibición Neural/genética , Vías Nerviosas/fisiopatología , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/metabolismo , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Epilepsia/etiología , Epilepsia/metabolismo , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Neocórtex/metabolismo , Neocórtex/fisiopatología , Vías Nerviosas/metabolismo , Plasticidad Neuronal/fisiología , Neurotoxinas/farmacología , Transmisión Sináptica/genética , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Previous studies suggested that cleavage of the amyloid precursor protein (APP) at aspartate residue 664 by caspases may play a key role in the pathogenesis of Alzheimer's disease. Mutation of this site (D664A) prevents caspase cleavage and the generation of the C-terminal APP fragments C31 and Jcasp, which have been proposed to mediate amyloid-beta (Abeta) neurotoxicity. Here we compared human APP transgenic mice with (B254) and without (J20) the D664A mutation in a battery of tests. Before Abeta deposition, hAPP-B254 and hAPP-J20 mice had comparable hippocampal levels of Abeta(1-42). At 2-3 or 5-7 months of age, hAPP-B254 and hAPP-J20 mice had similar abnormalities relative to nontransgenic mice in spatial and nonspatial learning and memory, elevated plus maze performance, electrophysiological measures of synaptic transmission and plasticity, and levels of synaptic activity-related proteins. Thus, caspase cleavage of APP at position D664 and generation of C31 do not play a critical role in the development of these abnormalities.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Caspasas/metabolismo , Modelos Animales de Enfermedad , Neuronas/metabolismo , Desempeño Psicomotor/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Humanos , Hidrólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Neuronas/patologíaRESUMEN
The lipid transport protein apolipoprotein E (apoE) is abundantly expressed in the brain. Its main isoforms in humans are apoE2, apoE3, and apoE4. ApoE4 is the major known genetic risk factor for Alzheimer's disease and also contributes to the pathogenesis of various other neurological conditions. In the central nervous system, apoE is synthesized by glial cells and neurons, but it is unclear whether the cellular source affects its biological activities. To address this issue, we induced excitotoxic injury by systemic kainic acid injection in transgenic Apoe knockout mice expressing human apoE isoforms in astrocytes or neurons. Regardless of its cellular source, apoE3 expression protected neuronal synapses and dendrites against the excitotoxicity seen in apoE-deficient mice. Astrocyte-derived apoE4, which has previously been shown to have detrimental effects in vitro, was as excitoprotective as apoE3 in vivo. In contrast, neuronal expression of apoE4 was not protective and resulted in loss of cortical neurons after excitotoxic challenge, indicating that neuronal apoE4 promotes excitotoxic cell death. Thus, an imbalance between astrocytic (excitoprotective) and neuronal (neurotoxic) apoE4 expression may increase susceptibility to diverse neurological diseases involving excitotoxic mechanisms.
Asunto(s)
Apolipoproteína E4/metabolismo , Ratones Transgénicos , Neuronas , Isoformas de Proteínas/metabolismo , Animales , Apolipoproteína E4/genética , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Agonistas de Aminoácidos Excitadores/farmacología , Humanos , Ácido Kaínico/farmacología , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Isoformas de Proteínas/genéticaRESUMEN
The protein tau has been implicated in many brain disorders. In animal models, tau reduction suppresses epileptogenesis of diverse causes and ameliorates synaptic and behavioral abnormalities in various conditions associated with excessive excitation-inhibition (E/I) ratios. However, the underlying mechanisms are unknown. Global genetic ablation of tau in mice reduces the action potential (AP) firing and E/I ratio of pyramidal cells in acute cortical slices without affecting the excitability of these cells. Tau ablation reduces the excitatory inputs to inhibitory neurons, increases the excitability of these cells, and structurally alters their axon initial segments (AISs). In primary neuronal cultures subjected to prolonged overstimulation, tau ablation diminishes the homeostatic response of AISs in inhibitory neurons, promotes inhibition, and suppresses hypersynchrony. Together, these differential alterations in excitatory and inhibitory neurons help explain how tau reduction prevents network hypersynchrony and counteracts brain disorders causing abnormally increased E/I ratios.
Asunto(s)
Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Interneuronas/metabolismo , Inhibición Neural , Vías Nerviosas/metabolismo , Células Piramidales/metabolismo , Corteza Somatosensorial/metabolismo , Proteínas tau/deficiencia , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Células Cultivadas , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/fisiopatología , Femenino , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas/citología , Plasticidad Neuronal , Corteza Somatosensorial/citología , Factores de Tiempo , Proteínas tau/genéticaRESUMEN
Nonconvulsive epileptiform activity and microglial alterations have been detected in people with Alzheimer's disease (AD) and related mouse models. However, the relationship between these abnormalities remains to be elucidated. We suppressed epileptiform activity by treatment with the antiepileptic drug levetiracetam or by genetic ablation of tau and found that these interventions reversed or prevented aberrant microglial gene expression in brain tissues of aged human amyloid precursor protein transgenic mice, which simulate several key aspects of AD. The most robustly modulated genes included multiple factors previously implicated in AD pathogenesis, including TREM2, the hypofunction of which increases disease risk. Genetic reduction of TREM2 exacerbated epileptiform activity after mice were injected with kainate. We conclude that AD-related epileptiform activity markedly changes the molecular profile of microglia, inducing both maladaptive and adaptive alterations in their activities. Increased expression of TREM2 seems to support microglial activities that counteract this type of network dysfunction.
RESUMEN
Diverse gene products contribute to the pathogenesis of Alzheimer's disease (AD). Experimental models have helped elucidate their mechanisms and impact on brain functions. Human amyloid precursor protein (hAPP) transgenic mice from line J20 (hAPP-J20 mice) are widely used to simulate key aspects of AD. However, they also carry an insertional mutation in noncoding sequence of one Zbtb20 allele, a gene involved in neural development. We demonstrate that heterozygous hAPP-J20 mice have reduced Zbtb20 expression in some AD-relevant brain regions, but not others, and that Zbtb20 levels are higher in hAPP-J20 mice than heterozygous Zbtb20 knock-out (Zbtb20+/-) mice. Whereas hAPP-J20 mice have premature mortality, severe deficits in learning and memory, other behavioral alterations, and prominent nonconvulsive epileptiform activity, Zbtb20+/- mice do not. Thus, the insertional mutation in hAPP-J20 mice does not ablate the affected Zbtb20 allele and is unlikely to account for the AD-like phenotype of this model.
Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Ratones Transgénicos , Fenotipo , Factores de TranscripciónRESUMEN
The accumulation of amyloid-beta (Abeta) peptides in the brain of patients with Alzheimer's disease (AD) may arise from an imbalance between Abeta production and clearance. Overexpression of the Abeta-degrading enzyme neprilysin in brains of human amyloid precursor protein (hAPP) transgenic mice decreases overall Abeta levels and amyloid plaque burdens. Because AD-related synaptic and cognitive deficits appear to be more closely related to Abeta oligomers than to plaques, it is important to determine whether increased neprilysin activity also diminishes the levels of pathogenic Abeta oligomers and related neuronal deficits in vivo. To address this question, we crossed hAPP transgenic mice with neprilysin transgenic mice and analyzed their offspring. Neprilysin overexpression reduced soluble Abeta levels by 50% and effectively prevented early Abeta deposition in the neocortex and hippocampus. However, it did not reduce levels of Abeta trimers and Abeta*56 or improve deficits in spatial learning and memory. The differential effect of neprilysin on plaques and oligomers suggests that neprilysin-dependent degradation of Abeta affects plaques more than oligomers and that these structures may form through distinct assembly mechanisms. Neprilysin's inability to prevent learning and memory deficits in hAPP mice may be related to its inability to reduce pathogenic Abeta oligomers. Reduction of Abeta oligomers will likely be required for anti-Abeta treatments to improve cognitive functions.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Trastornos del Conocimiento/genética , Neprilisina/metabolismo , Placa Amiloide/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Regulación de la Expresión Génica/genética , Humanos , Discapacidades para el Aprendizaje/genética , Discapacidades para el Aprendizaje/metabolismo , Discapacidades para el Aprendizaje/fisiopatología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neprilisina/genética , Polímeros/metabolismoRESUMEN
Autism is characterized by repetitive behaviors, impaired social interactions, and communication deficits. It is a prevalent neurodevelopmental disorder, and available treatments offer little benefit. Here, we show that genetically reducing the protein tau prevents behavioral signs of autism in two mouse models simulating distinct causes of this condition. Similar to a proportion of people with autism, both models have epilepsy, abnormally enlarged brains, and overactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B)/ mammalian target of rapamycin (mTOR) signaling pathway. All of these abnormalities were prevented or markedly diminished by partial or complete genetic removal of tau. We identify disinhibition of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a negative PI3K regulator that tau controls, as a plausible mechanism and demonstrate that tau interacts with PTEN via tau's proline-rich domain. Our findings suggest an enabling role of tau in the pathogenesis of autism and identify tau reduction as a potential therapeutic strategy for some of the disorders that cause this condition.