Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(7): e17410, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38978457

RESUMEN

Forests are the largest carbon sink in terrestrial ecosystems, and the impact of nitrogen (N) deposition on this carbon sink depends on the fate of external N inputs. However, the patterns and driving factors of N retention in different forest compartments remain elusive. In this study, we synthesized 408 observations from global forest 15N tracer experiments to reveal the variation and underlying mechanisms of 15N retention in plants and soils. The results showed that the average total ecosystem 15N retention in global forests was 63.04 ± 1.23%, with the soil pool being the main N sink (45.76 ± 1.29%). Plants absorbed 17.28 ± 0.83% of 15N, with more allocated to leaves (5.83 ± 0.63%) and roots (5.84 ± 0.44%). In subtropical and tropical forests, 15N was mainly absorbed by plants and mineral soils, while the organic soil layer in temperate forests retained more 15N. Additionally, forests retained more N 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ than N 15 O 3 - $$ {}^{15}\mathrm{N}{\mathrm{O}}_3^{-} $$ , primarily due to the stronger capacity of the organic soil layer to retain N 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ . The mechanisms of 15N retention varied among ecosystem compartments, with total ecosystem 15N retention affected by N deposition. Plant 15N retention was influenced by vegetative and microbial nutrient demands, while soil 15N retention was regulated by climate factors and soil nutrient supply. Overall, this study emphasizes the importance of climate and nutrient supply and demand in regulating forest N retention and provides data to further explore the impacts of N deposition on forest carbon sequestration.


Asunto(s)
Bosques , Isótopos de Nitrógeno , Nitrógeno , Suelo , Nitrógeno/análisis , Nitrógeno/metabolismo , Suelo/química , Isótopos de Nitrógeno/análisis , Atmósfera/química , Secuestro de Carbono , Árboles/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/química
2.
Glob Chang Biol ; 30(1): e17155, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273528

RESUMEN

There is growing evidence that land-use management practices such as livestock grazing can strongly impact the local diversity, functioning, and stability of grassland communities. However, whether these impacts depend on environmental condition and propagate to larger spatial scales remains unclear. Using an 8-year grassland exclosure experiment conducted at nine sites in the Tibetan Plateau covering a large precipitation gradient, we found that herbivore exclusion increased the temporal stability of alpine grassland biomass production at both the local and larger (site) spatial scales. Higher local community stability was attributed to greater stability of dominant species, whereas higher stability at the larger scale was linked to higher spatial asynchrony of productivity among local communities. Additionally, sites with higher mean annual precipitation had lower dominant species stability and lower grassland stability at both the spatial scales considered. Our study provides novel evidence that livestock grazing can impair grassland stability across spatial scales and climatic gradients.


Asunto(s)
Pradera , Herbivoria , Animales , Biomasa , Ganado , Ecosistema
3.
Environ Res ; 245: 117987, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38141918

RESUMEN

Intense human activities have significantly altered the concentrations of atmospheric components that enter ecosystems through wet and dry deposition, thereby affecting elemental cycles. However, atmospheric wet deposition multi-elemental stoichiometric ratios are poorly understood, hindering systematic exploration of atmospheric deposition effects on ecosystems. Monthly precipitation concentrations of six elements-nitrogen (N), phosphorus (P), sulfur (S), potassium (K), calcium (Ca), and magnesium (Mg)-were measured from 2013 to 2021 by the China Wet Deposition Observation Network (ChinaWD). The multi-elemental stoichiometric ratio of atmospheric wet deposition in Chinese terrestrial ecosystems was N: K: Ca: Mg: S: P = 31: 11: 67: 5.5: 28: 1, and there were differences between vegetation zones. Wet deposition N: S and N: Ca ratios exhibited initially increasing then decreasing inter-annual trends, whereas N: P ratios did not exhibit significant trends, with strong interannual variability. Wet deposition of multi-elements was significantly spatially negatively correlated with soil nutrient elements content (except for N), which indicates that wet deposition could facilitate soil nutrient replenishment, especially for nutrient-poor areas. Wet N deposition and N: P ratios were spatially negatively correlated with ecosystem and soil P densities. Meanwhile, wet deposition N: P ratios were all higher than those of ecosystem components (vegetation, soil, litter, and microorganisms) in different vegetation zones. High input of N deposition may reinforce P limitations in part of the ecosystem. The findings of this study establish a foundation for designing multi-elemental control experiments and exploring the ecological effects of atmospheric deposition.


Asunto(s)
Ecosistema , Nitrógeno , Humanos , Nitrógeno/análisis , Fósforo/análisis , Azufre , Suelo , China
4.
Glob Chang Biol ; 29(16): 4569-4585, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36880889

RESUMEN

Biodiversity is essential for maintaining the terrestrial ecosystem multifunctionality (EMF). Recent studies have revealed that the variations in terrestrial ecosystem functions are captured by three key axes: the maximum productivity, water use efficiency, and carbon use efficiency of the ecosystem. However, the role of biodiversity in supporting these three key axes has not yet been explored. In this study, we combined the (i) data collected from more than 840 vegetation plots across a large climatic gradient in China using standard protocols, (ii) data on plant traits and phylogenetic information for more than 2,500 plant species, and (iii) soil nutrient data measured in each plot. These data were used to systematically assess the contribution of environmental factors, species richness, functional and phylogenetic diversity, and community-weighted mean (CWM) and ecosystem traits (i.e., traits intensity normalized per unit land area) to EMF via hierarchical partitioning and Bayesian structural equation modeling. Multiple biodiversity attributes accounted for 70% of the influence of all the variables on EMF, and ecosystems with high functional diversity had high resource use efficiency. Our study is the first to systematically explore the role of different biodiversity attributes, including species richness, phylogenetic and functional diversity, and CWM and ecosystem traits, in the key axes of ecosystem functions. Our findings underscore that biodiversity conservation is critical for sustaining EMF and ultimately ensuring human well-being.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Filogenia , Teorema de Bayes , Agua , Suelo
5.
Glob Chang Biol ; 29(17): 4750-4757, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37381593

RESUMEN

Climate change leads to increasing temperature and more extreme hot and drought events. Ecosystem capability to cope with climate warming depends on vegetation's adjusting pace with temperature change. How environmental stresses impair such a vegetation pace has not been carefully investigated. Here we show that dryness substantially dampens vegetation pace in warm regions to adjust the optimal temperature of gross primary production (GPP) ( T opt GPP ) in response to change in temperature over space and time. T opt GPP spatially converges to an increase of 1.01°C (95% CI: 0.97, 1.05) per 1°C increase in the yearly maximum temperature (Tmax ) across humid or cold sites worldwide (37o S-79o N) but only 0.59°C (95% CI: 0.46, 0.74) per 1°C increase in Tmax across dry and warm sites. T opt GPP temporally changes by 0.81°C (95% CI: 0.75, 0.87) per 1°C interannual variation in Tmax at humid or cold sites and 0.42°C (95% CI: 0.17, 0.66) at dry and warm sites. Regardless of the water limitation, the maximum GPP (GPPmax ) similarly increases by 0.23 g C m-2 day-1 per 1°C increase in T opt GPP in either humid or dry areas. Our results indicate that the future climate warming likely stimulates vegetation productivity more substantially in humid than water-limited regions.


Asunto(s)
Cambio Climático , Plantas , Estrés Fisiológico , Temperatura , Sequías , Ecosistema
6.
Glob Chang Biol ; 29(4): 1054-1061, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36408718

RESUMEN

Atmospheric nitrogen (N) deposition is composed of both inorganic nitrogen (IN) and organic nitrogen (ON), and these sources of N may exhibit different impacts on ecosystems. However, our understanding of the impacts of N deposition is largely based on experimental gradients of INs or more rarely ONs. Thus, the effects of N deposition on ecosystem productivity and biodiversity may be biased. We explored the differential impacts of N addition with different IN:ON ratios (0:10, 3:7, 5:5, 7:3, and 10:0) on aboveground net primary productivity (ANPP) of plant community and plant diversity in a typical temperate grassland with a long-term N addition experiment. Soil pH, litter biomass, soil IN concentration, and light penetration were measured to examine the potential mechanisms underlying species loss with N addition. Our results showed that N addition significantly increased plant community ANPP by 68.33%-105.50% and reduced species richness by 16.20%-37.99%. The IN:ON ratios showed no significant effects on plant community ANPP. However, IN-induced species richness loss was about 2.34 times of ON-induced richness loss. Soil pH was positively related to species richness, and they exhibited very similar response patterns to IN:ON ratios. It implies that soil acidification accounts for the different magnitudes of species loss with IN and ON additions. Overall, our study suggests that it might be reasonable to evaluate the effects of N deposition on plant community ANPP with either IN or ON addition. However, the evaluation of N deposition on biodiversity might be overestimated if only IN is added or underestimated if only ON is added.


Asunto(s)
Ecosistema , Pradera , Nitrógeno , Biodiversidad , Biomasa , Plantas , Suelo
7.
Ecol Appl ; 32(5): e2575, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35191122

RESUMEN

Ecological restoration is essential to reverse land degradation worldwide. Most studies have assessed the restoration of ecosystem functions individually, as opposed to a holistic view. Here we developed a network-based ecosystem multifunctionality (EMF) framework to identify key functions in evaluating EMF restoration. Through synthesizing 293 restoration studies (2900 observations) following cropland abandonment, we found that individual soil functions played different roles in determining the restoration of belowground EMF. Soil carbon, total nitrogen, and phosphatase were key functions to predict the recovery of belowground EMF. On average, abandoned cropland recovered ~19% of EMF during 18 years. The restoration of EMF became larger with longer recovery time and higher humidity index, but lower with increasing soil depth and initial soil carbon. Overall, this study presents a network-based EMF framework, effectively helping to evaluate the success of ecosystem restoration and identify the key functions.


Asunto(s)
Ecosistema , Suelo , Carbono , Nitrógeno/metabolismo , Microbiología del Suelo
8.
Environ Sci Technol ; 56(18): 12898-12905, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36026692

RESUMEN

Iron (Fe), molybdenum (Mo), and vanadium (V) are the main components of the three known biological nitrogenases, which constrain nitrogen fixation and affect ecosystem productivity. Atmospheric deposition is an important pathway of these trace metals into ecosystems. Here, we explored the deposition flux, spatiotemporal pattern, and influencing factors of atmospheric wet Fe, Mo, and V deposition based on China Wet Deposition Observation Network (ChinaWD) data from 2016 to 2020. Our results showed that atmospheric wet Fe, Mo, and V deposition was 7.77 ± 7.24, 0.16 ± 0.11, and 0.13 ± 0.12 mg m-2 a-1 in Chinese terrestrial ecosystems, respectively, and revealed obvious spatial patterns but no significant annual trends. Wet Fe deposition was significantly correlated with the soil Fe content. Mo and V deposition was more affected by anthropogenic activities than Fe deposition. Wet Mo deposition was significantly affected by Mo ore reserves and waste incineration. V deposition was significantly correlated with domestic biomass burning. This study quantified wet Fe, Mo, and V deposition in China for the first time, and the implications of atmospheric trace metal deposition on biological nitrogen fixation were discussed.


Asunto(s)
Oligoelementos , Vanadio , China , Ecosistema , Monitoreo del Ambiente/métodos , Hierro/metabolismo , Molibdeno , Nitrógeno/metabolismo , Suelo , Vanadio/metabolismo
9.
Environ Res ; 214(Pt 3): 114084, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35973460

RESUMEN

Silicon (Si) is considered a "quasi-essential" nutrient element for plants and is also an essential nutrient for some phytoplankton. Except for the silicate provided by weathering, atmospheric deposition has gradually become an important supplementary method for Si nutrients to enter the ecosystem. However, national observational studies on atmospheric silicon deposition have not yet been reported. Herein, based on the China Wet Deposition Observation Network, we continuously collected monthly wet deposition samples from 43 typical ecosystems from 2013 to 2020 and measured the content of dissolved silica (dSi) in precipitation to quantify the spatiotemporal patterns of Si wet deposition in China. The results showed that the mean annual dSi wet deposition in China during 2013-2020 was approximately 2.07 ± 0.27 kg ha-1 yr-1. Atmospheric dSi deposition was higher in Southwest, North, and South China but lower in the Northwest and Northeast China, which was mainly regulated by precipitation and soil available Si content. There was no significant annual variation trend in dSi deposition during 2013-2020 in China, which showed disorderly fluctuations from year to year. This study revealed the spatiotemporal patterns of atmospheric dSi deposition in China for the first time, which can provide unique scientific data to explore the potential effect of dSi deposition on carbon sequestration in aquatic ecosystems. A comprehensive evaluation of the nutrient balance of aquatic ecosystems from the perspective of nitrogen, phosphorus, and silicon stoichiometry is required in the future.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , China , Nitrógeno/análisis , Silicio
10.
Glob Chang Biol ; 27(10): 2011-2028, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33528058

RESUMEN

Current consensus on global climate change predicts warming trends with more pronounced temperature changes in winter than summer in the Northern Hemisphere at high latitudes. Moderate increases in soil temperature are generally related to faster rates of soil organic carbon (SOC) decomposition in Northern ecosystems, but there is evidence that SOC stocks have remained remarkably stable or even increased on the Tibetan Plateau under these conditions. This intriguing observation points to altered soil microbial mediation of carbon-cycling feedbacks in this region that might be related to seasonal warming. This study investigated the unexplained SOC stabilization observed on the Tibetan Plateau by quantifying microbial responses to experimental seasonal warming in a typical alpine meadow. Ecosystem respiration was reduced by 17%-38% under winter warming compared with year-round warming or no warming and coincided with decreased abundances of fungi and functional genes that control labile and stable organic carbon decomposition. Compared with year-round warming, winter warming slowed macroaggregate turnover rates by 1.6 times, increased fine intra-aggregate particulate organic matter content by 75%, and increased carbon stabilized in microaggregates within stable macroaggregates by 56%. Larger bacterial "necromass" (amino sugars) concentrations in soil under winter warming coincided with a 12% increase in carboxyl-C. These results indicate the enhanced physical preservation of SOC under winter warming and emphasize the role of soil microorganisms in aggregate life cycles. In summary, the divergent responses of SOC persistence in soils exposed to winter warming compared to year-round warming are explained by the slowing of microbial decomposition but increasing physical protection of microbially derived organic compounds. Consequently, the soil microbial response to winter warming on the Tibetan Plateau may cause negative feedbacks to global climate change and should be considered in Earth system models.


Asunto(s)
Carbono , Suelo , Ecosistema , Estaciones del Año , Microbiología del Suelo
11.
Environ Sci Technol ; 55(3): 1446-1455, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33442981

RESUMEN

Food, energy, and water (FEW) systems have been recognized as an issue of critical global importance. Understanding the mechanisms that govern the FEW nexus is essential to develop solutions and avoid humanitarian crises of displacement, famine, and disease. The U.S. and China are the world's leading economies. Although the two nations are shaped by fundamentally different political and economic systems, they share FEW trajectories in several complementary ways. These realities place the U.S. and China in unique positions to engage in problem definition, dialogue, actions, and transdisciplinary convergence of research to achieve productive solutions addressing FEW challenges. By comparing the nexus and functions of the FEW systems in the two nations, this perspective aims to facilitate collaborative innovations that reduce disciplinary silos, mitigate FEW challenges, and enhance environmental sustainability. The review of experiences and challenges facing the U.S. and China also offers valuable insights for other nations seeking to achieve sustainable development goals.


Asunto(s)
Abastecimiento de Alimentos , Agua , China , Alimentos , Estados Unidos
12.
Environ Res ; 202: 111787, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34339690

RESUMEN

Long-term atmospheric nitrogen (N) deposition increases bioavailable N in terrestrial ecosystems, thereby influencing ecosystem productivity. However, how N deposition and its components (i.e., NO3--N and NH4+-N) influence the spatial pattern of productivity in terrestrial ecosystems in China remains unknown. Here, we utilize published data including carbon (C) fluxes from eddy flux tower (gross ecosystem productivity, ecosystem respiration, and net ecosystem productivity) and the corresponding climate and N deposition data for 60 typical ecosystems in China. The objective was to investigate the effect of N deposition on ecosystem productivity and explore the variations of N use efficiency (NUE). Our results reveal that atmospheric total N deposition is significantly correlated with C fluxes of terrestrial ecosystems in China. Ecosystems respond variably to different components of N deposition. In detail, forest ecosystem marginally correlated with NO3--N and wet deposition, while grassland ecosystem significantly correlated with NH4+-N and dry deposition. NUE of productivity induced by N deposition in Chinese terrestrial ecosystems was 53.95 ± 40.30 g C g-1 N, and it was influenced by precipitation and aridity index. This study quantifies the contribution of total N deposition and its associated components to productivity in terrestrial ecosystems in China, offering vital information for regional C and N management.


Asunto(s)
Ecosistema , Nitrógeno , Carbono/análisis , Ciclo del Carbono , China , Nitrógeno/análisis
13.
Proc Natl Acad Sci U S A ; 115(16): 4021-4026, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29666314

RESUMEN

China's terrestrial ecosystems have functioned as important carbon sinks. However, previous estimates of carbon budgets have included large uncertainties owing to the limitations of sample size, multiple data sources, and inconsistent methodologies. In this study, we conducted an intensive field campaign involving 14,371 field plots to investigate all sectors of carbon stocks in China's forests, shrublands, grasslands, and croplands to better estimate the regional and national carbon pools and to explore the biogeographical patterns and potential drivers of these pools. The total carbon pool in these four ecosystems was 79.24 ± 2.42 Pg C, of which 82.9% was stored in soil (to a depth of 1 m), 16.5% in biomass, and 0.60% in litter. Forests, shrublands, grasslands, and croplands contained 30.83 ± 1.57 Pg C, 6.69 ± 0.32 Pg C, 25.40 ± 1.49 Pg C, and 16.32 ± 0.41 Pg C, respectively. When all terrestrial ecosystems are taken into account, the country's total carbon pool is 89.27 ± 1.05 Pg C. The carbon density of the forests, shrublands, and grasslands exhibited a strong correlation with climate: it decreased with increasing temperature but increased with increasing precipitation. Our analysis also suggests a significant sequestration potential of 1.9-3.4 Pg C in forest biomass in the next 10-20 years assuming no removals, mainly because of forest growth. Our results update the estimates of carbon pools in China's terrestrial ecosystems based on direct field measurements, and these estimates are essential to the validation and parameterization of carbon models in China and globally.


Asunto(s)
Secuestro de Carbono , Carbono/análisis , Ecosistema , Biomasa , China , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/estadística & datos numéricos , Granjas , Bosques , Pradera , Actividades Humanas , Humanos , Dispersión de las Plantas , Plantas/química , Lluvia , Informe de Investigación , Suelo/química , Manejo de Especímenes , Encuestas y Cuestionarios , Temperatura
14.
Proc Natl Acad Sci U S A ; 115(16): 4039-4044, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29666317

RESUMEN

The long-term stressful utilization of forests and grasslands has led to ecosystem degradation and C loss. Since the late 1970s China has launched six key national ecological restoration projects to protect its environment and restore degraded ecosystems. Here, we conducted a large-scale field investigation and a literature survey of biomass and soil C in China's forest, shrubland, and grassland ecosystems across the regions where the six projects were implemented (∼16% of the country's land area). We investigated the changes in the C stocks of these ecosystems to evaluate the contributions of the projects to the country's C sink between 2001 and 2010. Over this decade, we estimated that the total annual C sink in the project region was 132 Tg C per y (1 Tg = 1012 g), over half of which (74 Tg C per y, 56%) was attributed to the implementation of the projects. Our results demonstrate that these restoration projects have substantially contributed to CO2 mitigation in China.


Asunto(s)
Secuestro de Carbono , Carbono/análisis , Conservación de los Recursos Naturales , Ecosistema , Biomasa , China , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/estadística & datos numéricos , Bosques , Pradera , Humanos , Plantas/química , Evaluación de Programas y Proyectos de Salud , Suelo/química , Movimientos del Agua
15.
Glob Chang Biol ; 26(4): 2534-2543, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31873968

RESUMEN

Carbon (C) and nitrogen (N) are the primary elements involved in the growth and development of plants. The C:N ratio is an indicator of nitrogen use efficiency (NUE) and an input parameter for some ecological and ecosystem models. However, knowledge remains limited about the convergent or divergent variation in the C:N ratios among different plant organs (e.g., leaf, branch, trunk, and root) and how evolution and environment affect the coefficient shifts. Using systematic measurements of the leaf-branch-trunk-root of 2,139 species from tropical to cold-temperate forests, we comprehensively evaluated variation in C:N ratio in different organs in different taxa and forest types. The ratios showed convergence in the direction of change but divergence in the rate of change. Plants evolved toward lower C:N ratios in the leaf and branch, with N playing a more important role than C. The C:N ratio of plant organs (except for the leaf) was constrained by phylogeny, but not strongly. Both the change of C:N during evolution and its spatial variation (lower C:N ratio at midlatitudes) help develop the adaptive growth hypothesis. That is, plants with a higher C:N ratio promote NUE under strong N-limited conditions to ensure survival priority, whereas plants with a lower C:N ratio under less N-limited environments benefit growth priority. In nature, larger proportion of species with a high C:N ratio enabled communities to inhabit more N-limited conditions. Our results provide new insights on the evolution and drivers of C:N ratio among different plant organs, as well as provide a quantitative basis to optimize land surface process models.

16.
Glob Chang Biol ; 25(10): 3267-3281, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31273887

RESUMEN

Nitrogen (N) deposition is a component of global change that has considerable impact on belowground carbon (C) dynamics. Plant growth stimulation and alterations of fungal community composition and functions are the main mechanisms driving soil C gains following N deposition in N-limited temperate forests. In N-rich tropical forests, however, N deposition generally has minor effects on plant growth; consequently, C storage in soil may strongly depend on the microbial processes that drive litter and soil organic matter decomposition. Here, we investigated how microbial functions in old-growth tropical forest soil responded to 13 years of N addition at four rates: 0 (Control), 50 (Low-N), 100 (Medium-N), and 150 (High-N) kg N ha-1  year-1 . Soil organic carbon (SOC) content increased under High-N, corresponding to a 33% decrease in CO2 efflux, and reductions in relative abundances of bacteria as well as genes responsible for cellulose and chitin degradation. A 113% increase in N2 O emission was positively correlated with soil acidification and an increase in the relative abundances of denitrification genes (narG and norB). Soil acidification induced by N addition decreased available P concentrations, and was associated with reductions in the relative abundance of phytase. The decreased relative abundance of bacteria and key functional gene groups for C degradation were related to slower SOC decomposition, indicating the key mechanisms driving SOC accumulation in the tropical forest soil subjected to High-N addition. However, changes in microbial functional groups associated with N and P cycling led to coincidentally large increases in N2 O emissions, and exacerbated soil P deficiency. These two factors partially offset the perceived beneficial effects of N addition on SOC storage in tropical forest soils. These findings suggest a potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes, and biodiversity of tropical ecosystems.


Asunto(s)
Nitrógeno , Suelo , Carbono , Ciclo del Carbono , Bosques
17.
Glob Chang Biol ; 25(3): 938-953, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30552830

RESUMEN

It is critical to accurately estimate carbon (C) turnover time as it dominates the uncertainty in ecosystem C sinks and their response to future climate change. In the absence of direct observations of ecosystem C losses, C turnover times are commonly estimated under the steady state assumption (SSA), which has been applied across a large range of temporal and spatial scales including many at which the validity of the assumption is likely to be violated. However, the errors associated with improperly applying SSA to estimate C turnover time and its covariance with climate as well as ecosystem C sequestrations have yet to be fully quantified. Here, we developed a novel model-data fusion framework and systematically analyzed the SSA-induced biases using time-series data collected from 10 permanent forest plots in the eastern China monsoon region. The results showed that (a) the SSA significantly underestimated mean turnover times (MTTs) by 29%, thereby leading to a 4.83-fold underestimation of the net ecosystem productivity (NEP) in these forest ecosystems, a major C sink globally; (b) the SSA-induced bias in MTT and NEP correlates negatively with forest age, which provides a significant caveat for applying the SSA to young-aged ecosystems; and (c) the sensitivity of MTT to temperature and precipitation was 22% and 42% lower, respectively, under the SSA. Thus, under the expected climate change, spatiotemporal changes in MTT are likely to be underestimated, thereby resulting in large errors in the variability of predicted global NEP. With the development of observation technology and the accumulation of spatiotemporal data, we suggest estimating MTTs at the disequilibrium state via long-term data assimilation, thereby effectively reducing the uncertainty in ecosystem C sequestration estimations and providing a better understanding of regional or global C cycle dynamics and C-climate feedback.


Asunto(s)
Ciclo del Carbono , Secuestro de Carbono , Cambio Climático , Ecosistema , Monitoreo del Ambiente , Carbono/análisis , China , Bosques , Modelos Teóricos , Lluvia , Temperatura
18.
Ecol Lett ; 21(10): 1457-1466, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30019373

RESUMEN

Understanding ecosystem dynamics and predicting directional changes in ecosystem in response to global changes are ongoing challenges in ecology. Here we present a framework that links productivity dynamics and ecosystem state transitions based on a spatially continuous dataset of aboveground net primary productivity (ANPP) from the temperate grassland of China. Across a regional precipitation gradient, we quantified spatial patterns in ANPP dynamics (variability, asymmetry and sensitivity to rainfall) and related these to transitions from desert to semi-arid to mesic steppe. We show that these three indices of ANPP dynamics displayed distinct spatial patterns, with peaks signalling transitions between grassland types. Thus, monitoring shifts in ANPP dynamics has the potential for predicting ecosystem state transitions in the future. Current ecosystem models fail to capture these dynamics, highlighting the need to incorporate more nuanced ecological controls of productivity in models to forecast future ecosystem shifts.


Asunto(s)
Ecosistema , Lluvia , China , Clima Desértico , Ambiente , Pradera
19.
Glob Chang Biol ; 24(7): 2965-2979, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29665249

RESUMEN

Given the important contributions of semiarid region to global land carbon cycle, accurate modeling of the interannual variability (IAV) of terrestrial gross primary productivity (GPP) is important but remains challenging. By decomposing GPP into leaf area index (LAI) and photosynthesis per leaf area (i.e., GPP_leaf), we investigated the IAV of GPP and the mechanisms responsible in a temperate grassland of northwestern China. We further assessed six ecosystem models for their capabilities in reproducing the observed IAV of GPP in a temperate grassland from 2004 to 2011 in China. We observed that the responses to LAI and GPP_leaf to soil water significantly contributed to IAV of GPP at the grassland ecosystem. Two of six models with prescribed LAI simulated of the observed IAV of GPP quite well, but still underestimated the variance of GPP_leaf, therefore the variance of GPP. In comparison, simulated pattern by the other four models with prognostic LAI differed significantly from the observed IAV of GPP. Only some models with prognostic LAI can capture the observed sharp decline of GPP in drought years. Further analysis indicated that accurately representing the responses of GPP_leaf and leaf stomatal conductance to soil moisture are critical for the models to reproduce the observed IAV of GPP_leaf. Our framework also identified that the contributions of LAI and GPP_leaf to the observed IAV of GPP were relatively independent. We conclude that our framework of decomposing GPP into LAI and GPP_leaf has a significant potential for facilitating future model intercomparison, benchmarking and optimization should be adopted for future data-model comparisons.


Asunto(s)
Pradera , Modelos Biológicos , Ciclo del Carbono , China , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Estomas de Plantas , Transpiración de Plantas , Suelo , Factores de Tiempo
20.
Glob Chang Biol ; 23(4): 1575-1584, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27562684

RESUMEN

Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr-1 with a 95% confidence interval of 0.28-0.42 Pg C yr-1 , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6-8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China.


Asunto(s)
Secuestro de Carbono , Bosques , Biomasa , Carbono , China , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA