Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 25(7)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290228

RESUMEN

Although antibacterial spectrum of essential oils (EOs) has been analyzed along with consumers' needs on natural biocides, singular treatments generally require high concentration of EOs and long-term exposures to eliminate target bacteria. To overcome these limitations, antibacterial complex has been developed and this review analyzed previous reports regarding the combined antibacterial effects of EOs. Since unexpectable combined effects (synergism or antagonism) can be derived from the treatment of antibacterial complex, synergistic and antagonistic combinations have been identified to improve the treatment efficiency and to avoid the overestimation of bactericidal efficacy, respectively. Although antibacterial mechanism of EOs is not yet clearly revealed, mode of action regarding synergistic effects especially for the elimination of pathogens by using low quantity of EOs with short-term exposure was reported. Whereas comprehensive analysis on previous literatures for EO-based disinfectant products implies that the composition of constituents in antibacterial complexes is variable and thus analyzing the impact of constituting substances (e.g., surfactant, emulsifier) on antibacterial effects is further needed. This review provides practical information regarding advances in the EO-based combined treatment technologies and highlights the importance of following researches on the interaction of constituents in antibacterial complex to clarify the mechanisms of antibacterial synergism and/or antagonism.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Aceites Volátiles/química , Aceites Volátiles/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/farmacología , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/farmacología
2.
Food Res Int ; 169: 112890, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254339

RESUMEN

The worldwide consumption of ready-to-eat seafood products has steadily increased due to a range of health benefits. However, depending on the handling or cutting process of raw fish, ready-to-eat sashimi can be exposed to microbiological risks that can lead to foodborne infection by marine pathogens. Since surface characteristics are key factors for microbial adhesion and biofilm formation, the present study aims to determine the correlation between raw fish skin properties and Vibrio parahaemolyticus biofilm formation. We analyzed V. parahaemolyticus biofilms (ATCC 17802; initially inoculated ca. 2 or 4 log CFU/cm2) on fish skin (gizzard shad, pomfret, red snapper, and mackerel; fish species served as sashimi without peeling the skin) formed under simulated marine environments (incubating in artificial seawater with rocking motion at 30 °C, the maximum temperature of seasonal seawater) for 24 h. The characteristics of fish skin were determined using confocal laser scanning microscopy/scanning electron microscopy. V. parahaemolyticus showed higher biofilm counts on fish skins than on stainless steel, which was used as a control (P < 0.05). In particular, V. parahaemolyticus formed biofilms with significantly higher levels of bacterial populations on gizzard shad and pomfret (ca. 5 log CFU/cm2; P < 0.05), highlighting the relationship between the biofilm formation level and the characteristics of gizzard shad and pomfret skins. The surface roughness of fish skins, including the main roughness parameters (Ra, Rq, and Rz), influenced the attachment of V. parahaemolyticus (P < 0.05). Additionally, images of V. parahaemolyticus biofilms suggested that different topographical profiles of fish species (e.g., mucus, unique structural features, etc.) could cause V. parahaemolyticus to exhibit different biofilm phenotypes, such as sticking to or entangling on the fish skin surface. The major findings of this study provide various phenotypic adhesions of V. parahaemolyticus to fish skin in considerations of the potential hazard for the consumption of ready-to-eat sashimi served with its skin.


Asunto(s)
Perciformes , Vibrio parahaemolyticus , Animales , Biopelículas , Alimentos Marinos/microbiología , Temperatura
3.
Food Res Int ; 166: 112601, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914348

RESUMEN

Raw enoki mushroom is a high-risk vector for listeriosis, which led to foodborne outbreaks resulting in four deaths in the United States in 2020. This study aimed to investigate the washing method for the inactivation of L. monocytogenes in enoki mushrooms for household and food service establishments. Five methods of washing fresh agricultural products without using disinfectants were selected: (1) rinsing under running water (2 L/min, 10 min), (2-3) dipping in water (200 ml/20 g) at 22 or 40 °C for 10 min, and using (4) 10% NaCl or (5) 5% vinegar at 22 °C for 10 min. The antibacterial efficacy of each washing method along with the final rinse was tested with enoki mushrooms inoculated with a 3-strain cocktail of L. monocytogenes (ATCC 19111, 19115, 19117; ca. 6 log CFU/g). The 5% vinegar showed a significant difference in antibacterial effect compared to the other treatments except 10% NaCl (P < 0.05), with the maximum elimination of L. monocytogenes by 1.23 log CFU/g. Therefore, a disinfectant for enoki mushrooms that can complement the commonly used washing method was developed using antimicrobials (caprylic acid, CA: 0, 0.20, 0.40%; thymol, TM: 0, 0.075, 0.15%). By combined treatment of 0.40% CA and 0.15% TM at 22 °C for 10 min, L. monocytogenes was completely inactivated (>5.55 log reduction CFU/g) and did not recover after enrichment, although individual treatments of antimicrobials showed low bactericidal effects of <1.50 log reduction CFU/g. The bacterial membrane disintegration induced by the disinfectant was analyzed through flow cytometry. Additionally, the sensory scores (odor and appearance) and color parameters (L*, a*, and b*) of enoki mushrooms treated with the disinfectant were not significantly different from those of enoki mushrooms washed with water (P > 0.05). Our findings suggest a washing disinfectant consisting of low concentrations of CA and TM with synergistic antibacterial effects without quality deterioration that can ensure the safe consumption of raw enoki mushrooms in homes and food service establishments.


Asunto(s)
Agaricales , Desinfectantes , Flammulina , Servicios de Alimentación , Listeria monocytogenes , Timol/farmacología , Ácido Acético/farmacología , Manipulación de Alimentos/métodos , Cloruro de Sodio/farmacología , Microbiología de Alimentos , Recuento de Colonia Microbiana , Desinfectantes/farmacología , Agua , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA