Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemphyschem ; : e202400335, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807346

RESUMEN

Vibrational-mode-selective modulation of electronic excitation is conducted with a synchronized femtosecond (fs) visible (vis) pulse and a picosecond (ps) infrared (IR) pulse. The mechanism of modulation of vibrational and vibronic relaxation behavior of excited state is investigated with ultrafast vis/IR, IR/IR, and vis-IR/IR transient spectroscopy, optical gating experiments and theoretical calculations. An organic molecule, 4'-(N,N-dimethylamino)-3-methoxyflavone (DMA3MHF) is chosen as the model system. Upon 1608 cm-1 excitation, the skeleton stretching vibration of DMA3MHF is energized, which can significantly change the shape of the absorption, facilitate the radiative decay and promote emission from vibrational excited states. As results, a remarkable enhancement and a slight blueshift in fluorescence are observed. The mode-selective modulation of electronic excitation is not limited in luminescence or photophysics. It is expected to be widely applicable in tuning many photochemical processes.

2.
J Phys Chem A ; 128(15): 2912-2922, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38572812

RESUMEN

Mode-selective vibrational excitations to modify the electronic states of fluorescein dianion in methanol solutions are carried out with a femtosecond visible pulse synchronized with a tunable high-power, narrow-band picosecond infrared (IR) pulse. In this work, simultaneous intensity enhancement, peak blueshift, and line width broadening of fluorescence are observed in the visible/IR double resonance experiments. Comprehensive investigations on the modulation mechanism with scanning the vibrational excitation frequencies, tuning the time delay between the two excitation pulses, theoretical calculations, and nonlinear and linear spectroscopic measurements suggest that the fluorescence intensity enhancement is caused by the increase of the Franck-Condon factor induced by the vibrational excitations at the electronic ground state. Various enhancement effects are observed as vibrations initially excited by the IR photons relax to populate the vibrational modes of lower frequencies. The peak blueshift and line width broadening are caused by both increasing the Franck-Condon factors among different subensembles because of IR pre-excitation and the long-lived processes induced by the initial IR excitation. The results demonstrate that the fluorescence from the visible/IR double resonance experiments is not a simple sum frequency effect, and vibrational relaxations can produce profound effects modifying luminescence.

3.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3838-3845, 2021 Aug.
Artículo en Zh | MEDLINE | ID: mdl-34472257

RESUMEN

The longevity mechanism of ginseng(Panax ginseng) is related to its strong meristematic ability. In this paper, this study used bioinformatic methods to identify the members of the ginseng TCP gene family in the whole genome and analyzed their sequence characteristics. Then, quantitative real-time fluorescent PCR was performed to analyze the TCP genes containing elements rela-ted to meristem expression in the taproots, fibrous roots, stems, and leaves. According to the data, this study further explored the expression specificity of TCP genes in ginseng tissues, which facilitated the dissection of the longevity mechanism of ginseng. The ginseng TCP members were identified and analyzed using PlantTFDB, ExPASy, MEME, PLANTCARE, TBtools, MEGA and DNAMAN. The results demonstrated that there were 60 TCP gene family members in ginseng, and they could be divided into two classes: Class Ⅰ and Class Ⅱ, in which the Class Ⅱ possessed two subclasses: CYC-TCP and CIN-TCP. The deduced TCP proteins in ginseng had the length of 128-793 aa, the isoelectric point of 4.49-9.84 and the relative molecular mass of 14.2-89.3 kDa. They all contained the basic helix-loop-helix(bHLH) domain. There are a variety of stress response-related cis-acting elements in the promoter regions of ginseng TCP genes, and PgTCP20-PgTCP24 contained the elements associated with meristematic expression. The transcription levels of PgTCP20-PgTCP24 were high in fibrous roots and leaves, but low in stems, indicating the tissue-specific expression of ginseng TCP genes. The Class Ⅰ TCP members which contained PgTCP20-PgTCP23, may be important regulators for the growth and development of ginseng roots.


Asunto(s)
Panax , Factores de Transcripción , Biología Computacional , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Panax/genética , Panax/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Pharm Pharmacol ; 73(1): 32-39, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33791811

RESUMEN

OBJECTIVES: Rheumatoid arthritis, a recurrent incendiary autoimmune joint syndrome, features by prominent synovial hyperplasia. Fibroblast-like synoviocytes are the executive components in the pathogenesis of rheumatoid arthritis. It is generally accepted that excessive proliferation and reduced apoptosis of fibroblast-like synoviocytes lead to synovial hyperplasia. Our previously studies found that sorafenib could inhibit adjuvant arthritis in rats and induced adjuvant arthritis fibroblast-like synoviocytes apoptosis. Presently, we aim to investigate the inhibitory effect with mechanisms of action of sorafenib on adjuvant arthritis fibroblast-like synoviocytes proliferation. METHODS: Cell counting kit-8 and flow cytometry detection were conducted to monitor FLSs proliferation and cell cycle. Western blotting and qPCR assays were performed to detect P21, P53, CDK4, CyclinD1 and proliferating cell nuclear antigen content levels. KEY FINDINGS: Sorafenib significantly inhibited adjuvant arthritis fibroblast-like synoviocytes proliferation with an IC50 value of 4 µmol/L by a concentration-dependent pattern, which accompanies by G1 cell cycle arrest. Also, sorafenib significantly decreased the levels of P21, CyclinD1, CDK4 and proliferating cell nuclear antigen, as well as up-regulated P53 expression in adjuvant arthritis fibroblast-like synoviocytes. CONCLUSIONS: Sorafenib could inhibit adjuvant arthritis fibroblast-like synoviocytes proliferation via arresting G1/S cell cycle progression, which was partially through CDK4/CyclinD1-mediated pathway, as well as up-regulating P53 and down-regulating proliferating cell nuclear antigen expressions. These results suggest that sorafenib may provide a new paradigm for rheumatoid arthritis treatment.


Asunto(s)
Artritis Experimental/patología , Ciclo Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Sorafenib/farmacología , Membrana Sinovial/efectos de los fármacos , Animales , Antirreumáticos/farmacología , Apoptosis , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Técnicas de Cultivo de Célula , Proliferación Celular , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Regulación hacia Abajo , Puntos de Control de la Fase G1 del Ciclo Celular , Hiperplasia , Ratones , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ratas Sprague-Dawley , Membrana Sinovial/citología , Membrana Sinovial/patología , Sinoviocitos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA