RESUMEN
In Arabidopsis thaliana, female gametophyte (FG) development is accompanied by the formation and expansion of the large vacuole in the FG; this is essential for FG expansion, nuclear polar localization, and cell fate determination. Arabidopsis VACUOLELESS GAMETOPHYTES (VLG) facilitates vesicular fusion to form large vacuole in the FG, but the regulation of VLG remains largely unknown. Here, we found that gain-of-function mutation of BRASSINOSTEROID INSENSITIVE2 (BIN2) (bin2-1) increases VLG abundance to induce the vacuole formation at stage FG1, and leads to abortion of FG. Loss-of-function mutation of BIN2 and its homologs (bin2-3 bil1 bil2) reduced VLG abundance and mimicked vlg/VLG phenotypes. Knocking down VLG in bin2-1 decreased the ratio of aberrant vacuole formation at stage FG1, whereas FG1-specific overexpression of VLG mimicked the bin2-1 phenotype. VLG partially rescued the bin2-3 bil1 bil2 phenotype, demonstrating that VLG acts downstream of BIN2. Mutation of VLG residues that are phosphorylated by BIN2 altered VLG stability and a phosphorylation mimic of VLG causes similar defects as did bin2-1. Therefore, BIN2 may function by interacting with and phosphorylating VLG in the FG to enhance its stability and abundance, thus facilitating vacuole formation. Our findings provide mechanistic insight into how the BIN2-VLG module regulates the spatiotemporal formation of the large vacuole in FG development.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Células Germinativas de las Plantas/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Transducción de Señal/genética , Vacuolas/metabolismoRESUMEN
Extensive epigenetic reprogramming occurs during preimplantation embryonic development. However, the impact of DNA methylation in plateau yak preimplantation embryos and how epigenetic reprogramming contributes to transcriptional regulatory networks are unclear. In this study, we quantified gene expression and DNA methylation in oocytes and a series of yak embryos at different developmental stages and at single-cell resolution using single-cell bisulfite-sequencing and RNA-seq. We characterized embryonic genome activation and maternal transcript degradation and mapped epigenetic reprogramming events critical for embryonic development. Through cross-species transcriptome analysis, we identified 31 conserved maternal hub genes and 39 conserved zygotic hub genes, including SIN3A, PRC1, HDAC1/2, and HSPD1. Notably, by combining single-cell DNA methylation and transcriptome analysis, we identified 43 candidate methylation driver genes, such as AURKA, NUSAP1, CENPF, and PLK1, that may be associated with embryonic development. Finally, using functional approaches, we further determined that the epigenetic modifications associated with the histone deacetylases HDAC1/2 are essential for embryonic development and that the deubiquitinating enzyme USP7 may affect embryonic development by regulating DNA methylation. Our data represent an extensive resource on the transcriptional dynamics of yak embryonic development and DNA methylation remodeling, and provide new insights into strategies for the conservation of germplasm resources, as well as a better understanding of mammalian early embryonic development that can be applied to investigate the causes of early developmental disorders.
Asunto(s)
Blastocisto , Metilación de ADN , Embrión de Mamíferos , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Análisis de Expresión Génica de una Sola Célula , Sulfitos , Animales , Bovinos , Femenino , Embarazo , Blastocisto/metabolismo , Desarrollo Embrionario/genética , Epigénesis Genética , Perfilación de la Expresión Génica , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Sulfitos/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/enzimologíaRESUMEN
Ovule initiation determines the maximum ovule number and has great impact on seed number and yield. However, the regulation of ovule initiation remains largely elusive. We previously reported that most of the ovule primordia initiate asynchronously at floral stage 9 and PINFORMED1 (PIN1) polarization and auxin distribution contributed to this process. Here, we further demonstrate that a small amount of ovule primordia initiate at floral stage 10 when the existing ovules initiated at floral stage 9 start to differentiate. Genetic analysis revealed that the absence of PIN3 function leads to the reduction in pistil size and the lack of late-initiated ovules, suggesting PIN3 promotes the late ovule initiation process and pistil growth. Physiological analysis illustrated that, unlike picloram, exogenous application of NAA can't restore these defective phenotypes, implying that PIN3-mediated polar auxin transport is required for the late ovule initiation and pistil length. qRT-PCR results indicated that the expression of SEEDSTICK (STK) is up-regulated under auxin analogues treatment while is down-regulated in pin3 mutants. Meanwhile, overexpressing STK rescues pin3 phenotypes, suggesting STK participates in PIN3-mediated late ovule initiation possibly by promoting pistil growth. Furthermore, brassinosteroid influences the late ovule initiation through positively regulating PIN3 expression. Collectively, this study demonstrates that PIN3 promotes the late ovule initiation and contributes to the extra ovule number. Our results give important clues for increasing seed number and yield of cruciferous and leguminous crops.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Dominio MADS/genética , Óvulo Vegetal/genéticaRESUMEN
BACKGROUND: Backfat serves as a vital fat reservoir in pigs, and its excessive accumulation will adversely impact pig growth performance, farming efficiency, and pork quality. The aim of this research is to integrate assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing (RNA-seq) to explore the molecular mechanisms underlying porcine backfat deposition. RESULTS: ATAC-seq analysis identified 568 genes originating from 698 regions exhibiting differential accessibility, which were significantly enriched in pathways pertinent to adipocyte differentiation and lipid metabolism. Besides, a total of 283 transcription factors (TFs) were identified by motif analysis. RNA-seq analysis revealed 978 differentially expressed genes (DEGs), which were enriched in pathways related to energy metabolism, cell cycle and signal transduction. The integration of ATAC-seq and RNA-seq data indicates that DEG expression levels are associated with chromatin accessibility. This comprehensive study highlights the involvement of critical pathways, including the Wnt signaling pathway, Jak-STAT signaling pathway, and fatty acid degradation, in the regulation of backfat deposition. Through rigorous analysis, we identified several candidate genes (LEP, CTBP2, EHHADH, OSMR, TCF7L2, BCL2, FGF1, UCP2, CCND1, TIMP1, and VDR) as potentially significant contributors to backfat deposition. Additionally, we constructed TF-TF and TF-target gene regulatory networks and identified a series of potential TFs related to backfat deposition (FOS, STAT3, SMAD3, and ESR1). CONCLUSIONS: This study represents the first application of ATAC-seq and RNA-seq, affording a novel perspective into the mechanisms underlying backfat deposition and providing invaluable resources for the enhancement of pig breeding programs.
Asunto(s)
Cromatina , Animales , Porcinos/genética , Cromatina/genética , Cromatina/metabolismo , Tejido Adiposo/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , RNA-SeqRESUMEN
C-terminus of HSP70 interacting protein (CHIP) is an E3 ubiquitin ligase and HSP70 cochaperone. Mutations in the CHIP encoding gene are the cause of two neurodegenerative conditions: spinocerebellar ataxia autosomal dominant type 48 (SCA48) and autosomal recessive type 16 (SCAR16). The mechanisms underlying CHIP-associated diseases are currently unknown. Mitochondrial dysfunction, specifically dysfunction in mitochondrial autophagy (mitophagy), is increasingly implicated in neurodegenerative diseases and loss of CHIP has been demonstrated to result in mitochondrial dysfunction in multiple animal models, although how CHIP is involved in mitophagy regulation has been previously unknown. Here, we demonstrate that CHIP acts as a negative regulator of the PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy pathway, promoting the degradation of PINK1, impairing Parkin translocation to the mitochondria, and suppressing mitophagy in response to mitochondrial stress. We also show that loss of CHIP enhances neuronal mitophagy in a PINK1 and Parkin dependent manner in Caenorhabditis elegans. Furthermore, we find that multiple disease-associated mutations in CHIP dysregulate mitophagy both in vitro and in vivo in C. elegans neurons, a finding which could implicate mitophagy dysregulation in CHIP-associated diseases.
Asunto(s)
Caenorhabditis elegans , Mitofagia , Mutación , Proteínas Quinasas , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Mitofagia/fisiología , Mitofagia/genética , Animales , Humanos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Neuronas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismoRESUMEN
Increasing the soybean-planting area and increasing the soybean yield per unit area are two effective solutions to improve the overall soybean yield. Northeast China has a large saline soil area, and if soybeans could be grown there with the help of isolated saline-tolerant rhizobia, the soybean cultivation area in China could be effectively expanded. In this study, soybeans were planted in soils at different latitudes in China, and four strains of rhizobia were isolated and identified from the soybean nodules. According to the latitudes of the soil-sampling sites from high to low, the four isolated strains were identified as HLNEAU1, HLNEAU2, HLNEAU3, and HLNEAU4. In this study, the isolated strains were identified for their resistances, and their acid and saline tolerances and nitrogen fixation capacities were preliminarily identified. Ten representative soybean germplasm resources in Northeast China were inoculated with these four strains, and the compatibilities of these four rhizobium strains with the soybean germplasm resources were analyzed. All four isolates were able to establish different extents of compatibility with 10 soybean resources. Hefeng 50 had good compatibility with the four isolated strains, while Suinong 14 showed the best compatibility with HLNEAU2. The isolated rhizobacteria could successfully establish symbiosis with the soybeans, but host specificity was also present. This study was a preliminary exploration of the use of salinity-tolerant rhizobacteria to help the soybean nitrogen fixation in saline soils in order to increase the soybean acreage, and it provides a valuable theoretical basis for the application of saline-tolerant rhizobia.
RESUMEN
The high recurrence rate of cervical cancer is a leading cause of cancer deaths in women. 5-Fluorouracil (5-FU) is an antitumor drug used to treat many types of cancer, but its diminishing effectiveness and side effects limit its use. Norcantharidin (NCTD), a demethylated derivative of cantharidin, exhibits various biological activities. Here, we investigated whether NCTD could potentiate 5-FU to induce cervical cancer cell death. To assess the cell viability and synergistic effects of the drugs, cell counting kit-8 and colony formation assays were performed using HR-HPV-positive cervical cancer cell lines. Annexin V-FITC/PI staining and TUNEL assays were performed to confirm the induction of apoptosis. The synergistic effect of NCTD on the antitumor activity of 5-FU was analyzed using network pharmacology, molecular docking, and molecular dynamics simulations. Apoptosis-related proteins were examined using immunoblotting. The combination of NCTD and 5-FU was synergistic in cervical cancer cell lines. Network pharmacological analysis identified 10 common targets of NCTD and 5-FU for cervical cancer treatment. Molecular docking showed the strong binding affinity of both compounds with CA12, CASP9, and PTGS1. Molecular dynamics simulations showed that the complex system of both drugs with caspase-9 could be in a stable state. NCTD enhanced 5-FU-mediated cytotoxicity by activating apoptosis-related proteins. NCTD acts synergistically with 5-FU to inhibit cervical cancer cell proliferation. NCTD enhances 5-FU-induced apoptosis in cervical cancer cell lines via the caspase-dependent pathway.
RESUMEN
BACKGROUND AND AIMS: Surgery is pivotal in the management of neuroblastoma (NB), particularly in patients with Image-Defined Risk Factors (IDRFs). The International Neuroblastoma Surgical Report Form (INSRF) was introduced to enhance surgical reporting quality and analyze the defining role of extensive surgery in NB. This study reports our experience with INSRF and explores new criteria for evaluating the extent of surgical resection. METHODS: INSRF was deployed to critically analyze 166 patients with abdominal or pelvic NB who underwent surgery at our department between October 2021 and June 2023. Patient demographics, clinical characteristics, surgical datasets, and postoperative complications were described in detail. Receiver operating characteristic (ROC) curves were used to explore a new method to evaluate the extent of resection. A questionnaire was formulated to obtain attitudes/feedback and commentary from surgical oncologists with INSRF. RESULTS: 166 neuroblastoma patients with a median disease age 36.50 months. This study collated 320 INSRF reports. Among the 166 index cases, 137 were documented by two surgeons, with a concordance rate of 16.78%. Items with high inconsistency were (i) the extent of tumor resection (29.20%), (ii) renal vein involvement (25.55%), (iii) abdominal aorta encasement (16.79%), and (iv) mesenteric infiltration (17.52%). According to INSRF, the extent of resection was complete excision in 86 (51.81%) patients, minimal residual tumor < 5 cm3 in 67 (40.36%) patients, and incomplete excision > 5 cm3 in 13 (7.83%) patients. In ROC curve analysis, the number of vessels encased by tumors > 3 had a high predictive value in determining that a tumor could not be completely resected (AUC 0.916, sensitivity 0.838, specificity 0.826) using INSRF as the gold standard reference. The questionnaires showed that surgeons agreed that the extent of resection and tumor involvement of organ/vascular structures were important, while the definition and intervention(s) of intraoperative complications were less operational and understandable. CONCLUSIONS: INSRF has significant clinical application in neuroblastoma surgery. The extent of resection can be predicted based on the number of tumor-encased blood vessels. Supplementary information should be considered with the INSRF to aid practitioner reporting. Multicenter studies are needed to explore the defining role of INSRF in NB surgical management.
RESUMEN
Preimplantation embryos undergo a series of important biological events, including epigenetic reprogramming and lineage differentiation, and the key genes and specific mechanisms that regulate these events are critical to reproductive success. Ubiquitin-specific protease 7 (USP7) is a deubiquitinase involved in the regulation of a variety of cellular functions, yet its precise function and mechanism in preimplantation embryonic development remain unknown. Our results showed that RNAi-mediated silencing of USP7 in mouse embryos or treatment with P5091, a small molecule inhibitor of USP7, significantly reduced blastocyst rate and blastocyst quality, and decreased total and trophectoderm cell numbers per blastocyst, as well as destroyed normal lineage differentiation. The results of single-cell RNA-seq, reverse transcription-quantitative polymerase chain reaction, western blot, and immunofluorescence staining indicated that interference with USP7 caused failure of the morula-to-blastocyst transition and was accompanied by abnormal expression of key genes (Cdx2, Oct4, Nanog, Sox2) for lineage differentiation, decreased transcript levels, increased global DNA methylation, elevated repressive histone marks (H3K27me3), and decreased active histone marks (H3K4me3 and H3K27ac). Notably, USP7 may regulate the transition from the morula to blastocyst by stabilizing the target protein YAP through the ubiquitin-proteasome pathway. In conclusion, our results suggest that USP7 may play a crucial role in preimplantation embryonic development by regulating lineage differentiation and key epigenetic modifications.
Asunto(s)
Blastocisto , Diferenciación Celular , Peptidasa Específica de Ubiquitina 7 , Animales , Ratones , Blastocisto/metabolismo , Blastocisto/efectos de los fármacos , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Diferenciación Celular/efectos de los fármacos , Femenino , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Linaje de la CélulaRESUMEN
Oral submucous fibrosis (OSF) is a potentially malignant disorder of the oral mucosa; however, whether and how the fibrotic matrix of OSF is involved in the malignant transformation of epithelial cells remains unknown. Herein, oral mucosa tissue from patients with OSF, OSF rat models, and their controls were used to observe the extracellular matrix changes and epithelial-mesenchymal transformation (EMT) in fibrotic lesions. Compared with controls, oral mucous tissues from patients with OSF showed an increased number of myofibroblasts, a decreased number of blood vessels, and increased type I and type III collagen levels. In addition, the oral mucous tissues from humans and OSF rats showed increased stiffness, accompanied by increased EMT activities of epithelial cells. The EMT activities of stiff construct-cultured epithelial cells were increased significantly by exogenous piezo-type mechanosensitive ion channel component 1 (Piezo1) activation, and decreased by yes-associated protein (YAP) inhibition. During ex vivo implantation, oral mucosal epithelial cells of the stiff group showed increased EMT activities and increased levels of Piezo1 and YAP compared with those in the sham and soft groups. These results indicate that increased stiffness of the fibrotic matrix in OSF led to increased proliferation and EMT of mucosal epithelial cells, in which the Piezo1-YAP signal transduction is important.
Asunto(s)
Fibrosis de la Submucosa Bucal , Humanos , Ratas , Animales , Fibrosis de la Submucosa Bucal/metabolismo , Fibrosis de la Submucosa Bucal/patología , Mucosa Bucal/metabolismo , Mucosa Bucal/patología , Transición Epitelial-Mesenquimal , Miofibroblastos/metabolismo , Células Epiteliales/metabolismoRESUMEN
In the field of chiral amine synthesis, ω-amine transaminase (ω-ATA) is one of the most established enzymes capable of asymmetric amination under optimal conditions. However, the applicability of ω-ATA toward more non-natural complex molecules remains limited due to its low transamination activity, thermostability, and narrow substrate scope. Here, by employing a combined approach of computational virtual screening strategy and combinatorial active-site saturation test/iterative saturation mutagenesis strategy, we have constructed the best variant M14C3-V5 (M14C3-V62A-V116S-E117I-L118I-V147F) with improved ω-ATA from Aspergillus terreus (AtATA) activity and thermostability toward non-natural substrate 1-acetylnaphthalene, which is the ketone precursor for producing the intermediate (R)-(+)-1-(1-naphthyl)ethylamine [(R)-NEA] of cinacalcet hydrochloride, showing activity enhancement of up to 3.4-fold compared to parent enzyme M14C3 (AtATA-F115L-M150C-H210N-M280C-V149A-L182F-L187F). The computational tools YASARA, Discovery Studio, Amber, and FoldX were applied for predicting mutation hotspots based on substrate-enzyme binding free energies and to show the possible mechanism with features related to AtATA structure, catalytic activity, and stability in silico analyses. M14C3-V5 achieved 71.8% conversion toward 50 mM 1-acetylnaphthalene in a 50 mL preparative-scale reaction for preparing (R)-NEA. Moreover, M14C3-V5 expanded the substrate scope toward aromatic ketone compounds. The generated virtual screening strategy based on the changes in binding free energies has successfully predicted the AtATA activity toward 1-acetylnaphthalene and related substrates. Together with experimental data, these approaches can serve as a gateway to explore desirable performances, expand enzyme-substrate scope, and accelerate biocatalysis.IMPORTANCEChiral amine is a crucial compound with many valuable applications. Their asymmetric synthesis employing ω-amine transaminases (ω-ATAs) is considered an attractive method. However, most ω-ATAs exhibit low activity and stability toward various non-natural substrates, which limits their industrial application. In this work, protein engineering strategy and computer-aided design are performed to evolve the activity and stability of ω-ATA from Aspergillus terreus toward non-natural substrates. After five rounds of mutations, the best variant, M14C3-V5, is obtained, showing better catalytic efficiency toward 1-acetylnaphthalene and higher thermostability than the original enzyme, M14C3. The robust combinational variant acquired displayed significant application value for pushing the asymmetric synthesis of aromatic chiral amines to a higher level.
Asunto(s)
Aspergillus , Estabilidad de Enzimas , Transaminasas , Transaminasas/metabolismo , Transaminasas/genética , Transaminasas/química , Aspergillus/enzimología , Aspergillus/genética , Especificidad por Sustrato , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Aminas/metabolismo , Aminas/química , Dominio CatalíticoRESUMEN
As the harvest season of most fruit is concentrated, fruit maturation manipulation is essential for the fresh fruit industry to prolong sales time. Gibberellin (GA), an important phytohormone necessary for plant growth and development, has also shown a substantial regulatory effect on fruit maturation; however, its regulatory mechanisms remain inconclusive. In this research, preharvest GA3 treatment effectively delayed fruit maturation in several persimmon (Diospyros kaki) cultivars. Among the proteins encoded by differentially expressed genes, 2 transcriptional activators (NAC TRANSCRIPTION FACTOR DkNAC24 and ETHYLENE RESPONSIVE FACTOR DkERF38) and a repressor (MYB-LIKE TRANSCRIPTION FACTOR DkMYB22) were direct regulators of GERANYLGERANYL DIPHOSPHATE SYNTHASE DkGGPS1, LYSINE HISTIDINE TRANSPORTER DkLHT1, and FRUCTOSE-BISPHOSPHATE ALDOLASE DkFBA1, respectively, resulting in the inhibition of carotenoid synthesis, outward transport of an ethylene precursor, and consumption of fructose and glucose. Thus, the present study not only provides a practical method to prolong the persimmon fruit maturation period in various cultivars but also provides insights into the regulatory mechanisms of GA on multiple aspects of fruit quality formation at the transcriptional regulation level.
Asunto(s)
Diospyros , Giberelinas , Giberelinas/farmacología , Giberelinas/metabolismo , Diospyros/genética , Diospyros/metabolismo , Frutas/metabolismo , Etilenos/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
The abuse of antibiotics has led to the widespread emergence of multi-drug resistant bacteria. Phage therapy holds promise for enhancing antibacterial and anti-infection strategies. Traditional bacteriophage therapy employs phage preparations as an alternative to antibiotics for the eradication of bacteria, aiming to achieve the desired clinical outcomes. Modification of phage by transgene or chemical modification overcomes the limitations of traditional bacteriophage therapy, including host spectrum modification, bacterial resistance reversal, antigen presentation, and drug targeted delivery, and thus broadens the application field of phage. This article summarizes the progress of engineered phages in the fields of antibacterial, anti-infective, and anti-tumor therapy. It emphasizes the advantages of engineered phages in antibacterial and anti-tumor treatment, and discusses the widespread potential of phage-based modular design as multifunctional biopharmaceuticals, drug carriers, and other applications.
RESUMEN
BACKGROUND: The efficacy of pharmacological and nutritional interventions in individuals at clinical high risk for psychosis (CHR-P) remains elusive. This study aims to investigate the efficacy of pharmacological and nutritional interventions in CHR-P and whether these interventions can enhance the efficacy of psychological treatments. METHODS: We systematically reviewed data from 5 databases until July 24, 2021: PubMed, Web of Science, EMBASE, China National Knowledge Infrastructure, and WanFang Data. The primary outcome was the transition to psychosis. Network meta-analyses were conducted at 3 time points (6, 12, and ≥24 months) considering both pharmacological/nutritional interventions alone and its combination with psychotherapy. RESULTS: Out of 11 417 identified references, 21 studies were included, comprising 1983 participants. CHR-P participants receiving omega-3 polyunsaturated fatty acids treatment were associated with a lower probability of transition compared with placebo/control at 6 months (odds ratio [OR] = 0.07, 95% confidence interval [CI] = .01 to .054), 12 months (OR = 0.14, 95% CI = .03 to .66), and ≥24 months (OR = 0.16, 95% CI = .05 to .54). Moreover, risperidone plus psychotherapy was associated with a lower likelihood of transition at 6 months compared with placebo/control plus psychotherapy, but this result was not sustained over longer durations. CONCLUSION: Omega-3 polyunsaturated fatty acids helped in preventing transitions to psychosis compared with controls. PROSPERO REGISTRATION NUMBER: CRD42021256209.
Asunto(s)
Ácidos Grasos Omega-3 , Metaanálisis en Red , Trastornos Psicóticos , Humanos , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/farmacología , Trastornos Psicóticos/prevención & control , Trastornos Psicóticos/terapia , Psicoterapia/métodos , Antipsicóticos/uso terapéutico , Antipsicóticos/administración & dosificaciónRESUMEN
We report on the efficient generation of intense terahertz radiation from the organic crystal N-benzyl-2-methyl-4-nitroaniline pumped by chirped Ti:sapphire femtosecond laser pulses. The THz energy and spectrum as a function of the pump fluence and duration of the chirped laser pulses are studied systematically. For the appropriate positively chirped pump pulses, a significant boost in the THz generation efficiency by a factor of around 2.5 is achieved, and the enhancement of high-frequency components (>1â THz) shortens the THz pulse duration. Via complete characterization of THz properties and transmitted laser spectra, this nonlinear behavior is attributed to the extended effective interaction length for phase matching as a result of the self-phase modulation of the intense pump laser pulses. Numerical calculations well reproduce the experimental observation. Our results demonstrate a robust, efficient, strong-field (up to several MV/cm) THz source using the common sub-10â mJ and sub-100â fs Ti:sapphire laser systems without optical parametric amplifiers.
RESUMEN
Relativistic positron sources with high spin polarization have important applications in nuclear and particle physics and many frontier fields. However, it is challenging to produce dense polarized positrons. Here we present a simple and effective method to achieve such a positron source by directly impinging a relativistic high-density electron beam on the surface of a solid target. During the interaction, a strong return current of plasma electrons is induced and subsequently asymmetric quasistatic magnetic fields as high as megatesla are generated along the target surface. This gives rise to strong radiative spin flips and multiphoton processes, thus leading to efficient generation of copious polarized positrons. With three-dimensional particle-in-cell simulations, we demonstrate the production of a dense highly polarized multi-GeV positron beam with an average spin polarization above 40% and nC-scale charge per shot. This offers a novel route for the studies of laserless strong-field quantum electrodynamics physics and for the development of high-energy polarized positron sources.
RESUMEN
Stable transport of laser beams in highly overdense plasmas is of significance in the fast ignition of inertial confinement fusion, relativistic electron generation, and powerful electromagnetic emission, but hard to realize. Early in 1996, Harris proposed an electromagnetically induced transparency (EIT) mechanism, analogous to the concept in atomic physics, to transport a low-frequency (LF) laser in overdense plasmas aided by a high-frequency pump laser. However, subsequent investigations show that EIT cannot occur in real plasmas with boundaries. Here, our particle-in-cell simulations show that EIT can occur in the strongly relativistic regime and result in stable propagation of a LF laser in bounded plasmas with tens of its critical density. A relativistic three-wave coupling model is developed, and the criteria and frequency passband for EIT occurrence are presented. The passband is sufficiently wide in the strongly relativistic regime, allowing EIT to work sustainably. Nevertheless, it is narrowed to nearly an isolated point in the weakly relativistic regime, which can explain the quenching of EIT in bounded plasmas found in previous investigations.
RESUMEN
We aimed to evaluate if circulating plasma cells (CPC) detected by flow cytometry could add prognostic value of R2-ISS staging. We collected the electronic medical records of 336 newly diagnosed MM patients (NDMM) in our hospital from January 2017 to June 2023. The median overall survival (OS) for patients and R2-ISS stage I-IV were not reached (NR), NR, 58 months and 53 months, respectively. There was no significant difference in OS between patients with stage I and patients with stage II (P = 0.309) or between patients with stage III and patients with stage IV (P = 0.391). All the cases were re-classified according to R2-ISS stage and CPC numbers ≥ 0.05% (CPC high) or<0.05% (CPC low) into four new risk groups: Group 1: R2-ISS stage I + R2-ISS stage II and CPC low, Group 2: R2-ISS stage II and CPC high + R2-ISS stage III and CPC low, Group 3: R2-ISS stage III and CPC high + R2-ISS stage IV and CPC low, Group 4: R2-ISS stage IV and CPC high. The median OS were NR, NR, 57 months and 32 months. OS of Group 1 was significantly longer than that of Group 2 (P = 0.033). OS in Group 2 was significantly longer than that of Group 3 (P = 0.007). OS in Group 3 was significantly longer than that of Group 4 (P = 0.041). R2-ISS staging combined with CPC can improve risk stratification for NDMM patients.
Asunto(s)
Mieloma Múltiple , Estadificación de Neoplasias , Células Plasmáticas , Humanos , Femenino , Masculino , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/patología , Mieloma Múltiple/sangre , Mieloma Múltiple/mortalidad , Persona de Mediana Edad , Anciano , Células Plasmáticas/patología , Adulto , Medición de Riesgo , Anciano de 80 o más Años , Estudios Retrospectivos , Tasa de Supervivencia , Pronóstico , Citometría de Flujo , Células Neoplásicas Circulantes/patologíaRESUMEN
BACKGROUND: Childhood trauma plays a crucial role in the dysfunctional reward circuitry in major depressive disorder (MDD). We sought to explore the effect of abnormalities in the globus pallidus (GP)-centric reward circuitry on the relationship between childhood trauma and MDD. METHODS: We conducted seed-based dynamic functional connectivity (dFC) analysis among people with or without MDD and with or without childhood trauma. We explored the relationship between abnormal reward circuitry, childhood trauma, and MDD. RESULTS: We included 48 people with MDD and childhood trauma, 30 people with MDD without childhood trauma, 57 controls with childhood trauma, and 46 controls without childhood trauma. We found that GP subregions exhibited abnormal dFC with several regions, including the inferior parietal lobe, thalamus, superior frontal gyrus (SFG), and precuneus. Abnormal dFC in these GP subregions showed a significant correlation with childhood trauma. Moderation analysis revealed that the dFC between the anterior GP and SFG, as well as between the anterior GP and the precentral gyrus, modulated the relationship between childhood abuse and MDD severity. We observed a negative correlation between childhood trauma and MDD severity among patients with lower dFC between the anterior GP and SFG, as well as higher dFC between the anterior GP and precentral gyrus. This suggests that reduced dFC between the anterior GP and SFG, along with increased dFC between the anterior GP and precentral gyrus, may attenuate the effect of childhood trauma on MDD severity. LIMITATIONS: Cross-sectional designs cannot be used to infer causality. CONCLUSION: Our findings underscore the pivotal role of reward circuitry abnormalities in MDD with childhood trauma. These abnormalities involve various brain regions, including the postcentral gyrus, precentral gyrus, inferior parietal lobe, precuneus, superior frontal gyrus, thalamus, and middle frontal gyrus. CLINICAL TRIAL REGISTRATION: ChiCTR2300078193.
Asunto(s)
Experiencias Adversas de la Infancia , Trastorno Depresivo Mayor , Globo Pálido , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Conectoma , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Globo Pálido/diagnóstico por imagen , Globo Pálido/fisiopatología , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , RecompensaRESUMEN
OBJECTIVES: The current understanding of survival prediction of lung transplant (LTx) patients with systemic sclerosis (SSc) is limited. This study aims to identify novel image features from preoperative chest CT scans associated with post-LTx survival in SSc patients and integrate them into comprehensive prediction models. MATERIALS AND METHODS: We conducted a retrospective study based on a cohort of SSc patients with demographic information, clinical data, and preoperative chest CT scans who underwent LTx between 2004 and 2020. This cohort consists of 102 patients (mean age, 50 years ± 10, 61% (62/102) females). Five CT-derived body composition features (bone, skeletal muscle, visceral, subcutaneous, and intramuscular adipose tissues) and three CT-derived cardiopulmonary features (heart, arteries, and veins) were automatically computed using 3-D convolutional neural networks. Cox regression was used to identify post-LTx survival factors, generate composite prediction models, and stratify patients based on mortality risk. Model performance was assessed using the area under the receiver operating characteristics curve (ROC-AUC). RESULTS: Muscle mass ratio, bone density, artery-vein volume ratio, muscle volume, and heart volume ratio computed from CT images were significantly associated with post-LTx survival. Models using only CT-derived features outperformed all state-of-the-art clinical models in predicting post-LTx survival. The addition of CT-derived features improved the performance of traditional models at 1-year, 3-year, and 5-year survival prediction with maximum AUC scores of 0.77 (0.67-0.86), 0.85 (0.77-0.93), and 0.90 (95% CI: 0.83-0.97), respectively. CONCLUSION: The integration of CT-derived features with demographic and clinical features can significantly improve t post-LTx survival prediction and identify high-risk SSc patients. KEY POINTS: Question What CT features can predict post-lung-transplant survival for SSc patients? Finding CT body composition features such as muscle mass, bone density, and cardiopulmonary volumes significantly predict survival. Clinical relevance Our individualized risk assessment tool can better guide clinicians in choosing and managing patients requiring lung transplant for systemic sclerosis.