Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 21(9): e3002256, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37708089

RESUMEN

The eradication of cancer stem cells (CSCs) with drug resistance confers the probability of local tumor control after chemotherapy or targeted therapy. As the main drug resistance marker, ABCG2 is also critical for colorectal cancer (CRC) evolution, in particular cancer stem-like traits expansion. Hitherto, the knowledge about the expression regulation of ABCG2, in particular its upstream transcriptional regulatory mechanisms, remains limited in cancer, including CRC. Here, ABCG2 was found to be markedly up-regulated in CRC CSCs (cCSCs) expansion and chemo-resistant CRC tissues and closely associated with CRC recurrence. Mechanistically, TOX3 was identified as a specific transcriptional factor to drive ABCG2 expression and subsequent cCSCs expansion and chemoresistance by binding to -261 to -141 segments of the ABCG2 promoter region. Moreover, we found that TOX3 recruited WDR5 to promote tri-methylation of H3K4 at the ABCG2 promoter in cCSCs, which further confers stem-like traits and chemoresistance to CRC by co-regulating the transcription of ABCG2. In line with this observation, TOX3, WDR5, and ABCG2 showed abnormal activation in chemo-resistant tumor tissues of in situ CRC mouse model and clinical investigation further demonstrated the comprehensive assessment of TOX3, WDR5, and ABCG2 could be a more efficient strategy for survival prediction of CRC patients with recurrence or metastasis. Thus, our study found that TOX3-WDR5/ABCG2 signaling axis plays a critical role in regulating CRC stem-like traits and chemoresistance, and a combination of chemotherapy with WDR5 inhibitors may induce synthetic lethality in ABCG2-deregulated tumors.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Animales , Ratones , Resistencia a Antineoplásicos/genética , Modelos Animales de Enfermedad , Conocimiento , Células Madre Neoplásicas , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética
2.
Cancer Sci ; 114(6): 2277-2292, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36786527

RESUMEN

The mediator complex usually cooperates with transcription factors to be involved in RNA polymerase II-mediated gene transcription. As one component of this complex, MED27 has been reported in our previous studies to promote thyroid cancer and melanoma progression. However, the precise function of MED27 in breast cancer development remains poorly understood. Here, we found that MED27 was more highly expressed in breast cancer samples than in normal tissues, especially in triple-negative breast cancer, and its expression level was elevated with the increase in pathological stage. MED27 knockdown in triple-negative breast cancer cells inhibited cancer cell metastasis and stemness maintenance, which was accompanied by downregulation of the expression of EMT- and stem traits-associated proteins, and vice versa in non-triple-negative breast cancer. Furthermore, MED27 knockdown sensitized breast cancer cells to epirubicin treatment by inducing cellular apoptosis and reducing tumorsphere-forming ability. Based on RNA-seq, we identified KLF4 as the possible downstream target of MED27. KLF4 overexpression reversed the MED27 silencing-mediated arrest of cellular metastasis and stemness maintenance capacity in breast cancer in vitro and in vivo. Mechanistically, MED27 transcriptionally regulated KLF4 by binding to its promoter region at positions -156 to +177. Collectively, our study not only demonstrated the tumor-promoting role of MED27 in breast cancer progression by transcriptionally targeting KLF4, but also suggested the possibility of developing the MED27/KLF4 signaling axis as a potential therapeutic target in breast cancer.


Asunto(s)
Neoplasias Mamarias Animales , Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Neoplasias Mamarias Animales/genética , Complejo Mediador/genética , Complejo Mediador/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/genética
4.
Cell Physiol Biochem ; 45(5): 1772-1786, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29495002

RESUMEN

BACKGROUND/AIMS: PI3KCA and mutant p53 are associated with tumorigenesis and the development of cancers. NVP-BKM120, a selective pan-PI3K inhibitor, exerts the antitumor activity by suppressing the PI3K signaling pathway. Prima-1Met, a low molecular weight compound, can rescue the gain-of-function of mutant p53 by restoring its transcriptional function. In this study, we investigated whether PI3K inhibition combined with mutant p53 reactivation could enhance the antitumor effect in thyroid cancer cells. METHODS: The effects of BKM120 and Prima-1Met on the proliferation, apoptosis, migration and invasion of thyroid cancer cells were measured by MTT, colony formation, flow cytometry, wound-healing and transwell assays, respectively. Thyroid differentiation was assessed by detecting the expression levels of specific markers using RT-PCR and Western blot. The in vivo antitumor efficacy was analyzed in a mouse xenograft model. RESULTS: The combinational treatment of BKM120 and Prima-1Met significantly enhanced the inhibitions of cell viability, colony formation, migration and invasion, and the induction of apoptosis in thyroid cell lines, and synergistically suppressed tumor xenograft growth by inhibiting the PI3K/Akt/mTOR and EMT signaling pathways, up-regulating p53 targeted genes, and triggering the release of cytochrome c. Moreover, the combination of BKM120 and Prima-1Met suppressed the stemlike traits of thyroid cancer cells and promoted their differentiation by upregulating the expression of thyroid-specific differentiation markers and repressing the expression of cancer stem cell markers. Furthermore, the mechanism study demonstrated that the combinational treatment synergistically abrogated the binding of CPSF4 at the promoter of hTERT and thus suppressed hTERT expression. Consistently, overexpression of hTERT rescued the inhibitions of cell viability, invasion and stem-like traits mediated by the combination of BKM120 and Prima-1Met. CONCLUSION: Our results showed that the combination of BKM120 with Prima-1Met synergistically suppressed the growth of thyroid cancer cells and tumor xenografts via inhibiting PI3K/Akt/mTOR and CPSF4/hTERT signaling and reactivating mutant p53.


Asunto(s)
Aminopiridinas/farmacología , Antineoplásicos/farmacología , Morfolinas/farmacología , Quinuclidinas/farmacología , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Aminopiridinas/química , Aminopiridinas/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Desnudos , Morfolinas/química , Morfolinas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinuclidinas/química , Quinuclidinas/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/patología , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba/efectos de los fármacos
5.
Cell Physiol Biochem ; 47(5): 1925-1935, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29972820

RESUMEN

BACKGROUND/AIMS: Activator protein-2 (AP-2) transcription factors have been proved to be essential in maintaining cellular homeostasis and regulating the transformation from normal growth to neoplasia. However, the role of AP-2ß, a key member of AP-2 family, in breast cancer is rarely reported. METHODS: The effect of AP-2 on cell growth, migration and invasion in breast cancer cells were measured by MTT, colony formation, wound-healing and transwell assays, respectively. The expression levels of AP-2ß and other specific markers in breast cancer cell lines and tissue microarrays from the patients were detected using RT-PCR, Western blot and immunohistochemical staining. The regulation of AP-2ß on tumor growth in vivo was analyzed in a mouse xenograft model. RESULTS: We demonstrated the tumor-promoting function of AP-2ß in breast cancer. AP-2ß was found to be highly expressed in breast cancer cell lines and tumor tissues of breast cancer patients. The shRNA-mediated silencing of AP-2ß led to the dramatic inhibition of cell proliferation, colony formation ability, migration and invasiveness in breast cancer cells accompanied by the down-regulated expression of some key proteins involved in cancer progression, including p75, MMP-2, MMP-9, C-Jun, p-ERK and STAT3. Overexpression of AP-2ß markedly up-regulated the levels of these proteins. Consistent with the in vitro study, the silencing or overexpression of AP-2ß blocked or promoted tumor growth in the mice with xenografts of breast cancers. Notably, the high AP-2ß expression levels was correlated with poor prognosis and advanced malignancy in patients with breast cancer. CONCLUSIONS: Our study demonstrates that AP-2ß promotes tumor growth and predicts poor prognosis, and may represent a potential therapeutic target for breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proliferación Celular , Proteínas de Neoplasias/metabolismo , Factor de Transcripción AP-2/metabolismo , Animales , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Femenino , Xenoinjertos , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Pronóstico
6.
Cell Physiol Biochem ; 44(2): 467-478, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29141249

RESUMEN

BACKGROUND/AIMS: ß-catenin is an integral component of the canonical Wnt signaling pathway, and its mutations are an autosomal recessive cause of colorectal cancer (CRC), medulloblastoma (MDB), and ovarian cancer. Nevertheless, little is known about its function in lung cancers. METHODS: We first knocked down ß-catenin by siRNA to investigate its effects on lung cancer cell proliferation, migration and apoptosis. Then we verified the interaction between ß-catenin and CREB binding protein (CBP) by immunofluoresence and co-immunoprecipition assays. Finally, the expression of ß-catenin and CBP in human lung adenocarcinoma specimens were analyzed by immunohistochemistry assay. RESULTS: ß-catenin knockdown inhibited cell proliferation, promoted apoptosis and suppressed cell migration in A549 and H460 cells accompanied by the decreased expression of Myc, PCNA, VEGF, CD44, MMP-9, MMP-13 and activated bax/caspase-3 pathway. Furthermore, co-immunoprecipition and immunofluoresence analyses revealed that CBP interacted with ß-catenin and contributed to ß-catenin-mediated lung cancer cell growth. Abolishment of their interaction by the Wnt/ß-catenin inhibitor ICG-001 remarkably suppressed cell proliferation. Immunohistochemistry assay of tissue microarrays from patients with lung cancer indicated that both CBP and ß-catenin were highly expressed in tumor tissues and predicted poor prognosis in lung adenocarcinoma patients. CONCLUSIONS: Our study has provided new evidence for the role of ß-catenin in promoting the growth of lung cancer cells through cooperation with CBP, and suggested that dual targeting of ß-catenin and CBP could be a potential therapeutic strategy in lung cancer treatment.


Asunto(s)
Adenocarcinoma/patología , Proteína de Unión a CREB/metabolismo , Neoplasias Pulmonares/patología , beta Catenina/metabolismo , Células A549 , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidad , Anciano , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/toxicidad , Proteína de Unión a CREB/antagonistas & inhibidores , Proteína de Unión a CREB/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Masculino , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Microscopía Fluorescente , Persona de Mediana Edad , Estadificación de Neoplasias , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Pirimidinonas/toxicidad , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo , beta Catenina/antagonistas & inhibidores , beta Catenina/genética
7.
Cell Physiol Biochem ; 41(6): 2475-2488, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28472785

RESUMEN

BACKGROUND/AIMS: Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide because the survival rate remains low. Cell division cycle 5-like (CDC5L) is highly expressed in some cancer cells, but the mechanism requires clarification. Human telomerase reverse transcriptase (hTERT) plays important roles in CRC. METHODS: This study aimed to identify a link between CDC5L and hTERT and to determine their effects on the signaling pathways, migration and prognosis of CRC cells. We first treated LoVo cells with biotin-labeled hTERT and identified CDC5L. Then, pulldown and ChIP assays were used to verify whether CDC5L was a promoter of hTERT. The roles of CDC5L and hTERT in cell growth and migration were studied using siRNA in vivo and in vitro. 130 human CRC specimens were analyzed using immunohistochemistry. Western blot and wound scratch analyses were used to determine the signaling pathway for CDC5L-mediated activation of CRC growth and migration. RESULTS: We identified CDC5L as a new hTERT promoter-binding protein. Clinically, CDC5L and hTERT expression levels were key factors in the prognosis of CRC patients. CDC5L knockdown inhibited tumor growth by down-regulating hTERT expression, and CDC5L was shown to be a transcriptional activator of hTERT in a luciferase reporter assay. CONCLUSION: Altogether, the above results demonstrated that CDC5L was positively correlated with hTERT as a key promoter of CRC cells. To some extent, our findings suggest that CDC5L may serve as a novel therapeutic target for human colorectal cancer.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorrectales/fisiopatología , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de Unión al ARN/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Anciano , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Supervivencia Celular , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Estadificación de Neoplasias , Regiones Promotoras Genéticas , Interferencia de ARN , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Activación Transcripcional , Trasplante Heterólogo
8.
J Pineal Res ; 62(2)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27865009

RESUMEN

5-Fluorouracil (5-FU) is one of the most commonly used chemotherapeutic agents in colon cancer treatment, but has a narrow therapeutic index limited by its toxicity. Melatonin exerts antitumor activity in various cancers, but it has never been combined with 5-FU as an anticolon cancer treatment to improve the chemotherapeutic effect of 5-FU. In this study, we assessed such combinational use in colon cancer and investigated whether melatonin could synergize the antitumor effect of 5-FU. We found that melatonin significantly enhanced the 5-FU-mediated inhibition of cell proliferation, colony formation, cell migration and invasion in colon cancer cells. We also found that melatonin synergized with 5-FU to promote the activation of the caspase/PARP-dependent apoptosis pathway and induce cell cycle arrest. Further mechanism study demonstrated that melatonin synergized the antitumor effect of 5-FU by targeting the PI3K/AKT and NF-κB/inducible nitric oxide synthase (iNOS) signaling. Melatonin in combination with 5-FU markedly suppressed the phosphorylation of PI3K, AKT, IKKα, IκBα, and p65 proteins, promoted the translocation of NF-κB p50/p65 from the nuclei to cytoplasm, abrogated their binding to the iNOS promoter, and thereby enhanced the inhibition of iNOS signaling. In addition, pretreatment with a PI3K- or iNOS-specific inhibitor synergized the antitumor effects of 5-FU and melatonin. Finally, we verified in a xenograft mouse model that melatonin and 5-FU exerted synergistic antitumor effect by inhibiting the AKT and iNOS signaling pathways. Collectively, our study demonstrated that melatonin synergized the chemotherapeutic effect of 5-FU in colon cancer through simultaneous suppression of multiple signaling pathways.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias del Colon/patología , Fluorouracilo/farmacología , Melatonina/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inmunoprecipitación de Cromatina , Sinergismo Farmacológico , Humanos , Inmunohistoquímica , Ratones , Ratones Desnudos , Microscopía Confocal , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cell Physiol Biochem ; 40(6): 1559-1569, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27997899

RESUMEN

BACKGROUND/AIMS: Bufalin can induce apoptosis in certain human cancer cell lines, but bufalin has not yet been thoroughly evaluated in colorectal cancer cells. Cleavage and polyadenylation specific factor 4 (CPSF4) and human telomerase reverse transcriptase (hTERT) play important roles in colorectal cancer growth. The aim of this study was to investigate the roles and interactions of bufalin, CPSF4 and hTERT and the effects of bufalin in human colorectal cancer. METHODS: We treated LoVo and SW620 cells with bufalin to investigate the effect of bufalin on proliferation, apoptosis and migration. We verified the relationship between CPSF4 and hTERT using pulldown assays, luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays. RESULTS: Bufalin inhibited the proliferation and migration of and induced apoptosis in LoVo and SW620 cells. We identified CPSF4 as an hTERT promoter-binding protein in colorectal cancer cells. CONCLUSION: Our study identified bufalin as a potential small molecule inhibitor for cancer therapy.


Asunto(s)
Bufanólidos/farmacología , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Telomerasa/metabolismo , Apoptosis/efectos de los fármacos , Bufanólidos/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Telomerasa/genética
10.
Mol Cancer ; 13: 203, 2014 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-25175164

RESUMEN

BACKGROUND: Gamabufotalin (CS-6), a major bufadienolide of Chansu, has been used for cancer therapy due to its desirable metabolic stability and less adverse effect. However, the underlying mechanism of CS-6 involved in anti-tumor activity remains poorly understood. METHODS: The biological functions of gamabufotalin (CS-6) were investigated by migration, colony formation and apoptosis assays in NSCLC cells. The nuclear localization and interaction between transcriptional co-activator p300 and NF-κB p50/p65 and their binding to COX-2 promoter were analyzed after treatment with CS-6. Molecular docking study was used to simulate the interaction of CS-6 with IKKß. The in vivo anti-tumor efficacy of CS-6 was also analyzed in xenografts nude mice. Western blot was used to detect the protein expression level. RESULTS: Gamabufotalin (CS-6) strongly suppressed COX-2 expression by inhibiting the phosphorylation of IKKß via targeting the ATP-binding site, thereby abrogating NF-κB binding and p300 recruitment to COX-2 promoter. In addition, CS-6 induced apoptosis by activating the cytochrome c and caspase-dependent apoptotic pathway. Moreover, CS-6 markedly down-regulated the protein levels of COX-2 and phosphorylated p65 NF-κB in tumor tissues of the xenograft mice, and inhibited tumor weight and size. CONCLUSIONS: Our study provides pharmacological evidence that CS-6 exhibits potential use in the treatment of COX-2-mediated diseases such as lung cancer.


Asunto(s)
Bufanólidos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ciclooxigenasa 2/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Venenos de Anfibios/química , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Ciclooxigenasa 2/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Trasplante de Neoplasias , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Conformación Proteica , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Mol Cancer ; 13: 89, 2014 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-24766673

RESUMEN

BACKGROUND: TFAP2B is a member of the AP2 transcription factor family, which orchestrates a variety of cell processes. However, the roles of TFAP2B in regulating carcinogenesis remain largely unknown. Here, we investigated the regulatory effects of TFAP2B on lung adenocarcinomas growth and identified the underlying mechanisms of actions in non-small cell lung cancer (NSCLC) cells. METHODS: We first examined the expression of TFAP2B in lung cancer cell lines and tumor tissues. We also analyzed the prognostic predicting value of TFAP2B in lung adenocarcinomas. Then we investigated the molecular mechanisms by which TFAP2B knockdown or overexpression regulated lung cancer cell growth, angiogenesis and apoptosis, and further confirmed the role of TFAP2B in tumor growth in a lung cancer xenograft mouse model. RESULTS: TFAP2B was highly expressed in NSCLC cell lines and tumor tissues. Strong TFAP2B expression showed a positive correlation with the poor prognoses of patients with lung adenocarcinomas (P < 0.001). TFAP2B knockdown by siRNA significantly inhibited cell growth and induced apoptosis in NSCLC cells in vitro and in a lung cancer subcutaneous xenograft model, whereas TFAP2B overexpression promoted cell growth. The observed regulation of cell growth was accompanied by the TFAP2B-mediated modulation of the ERK/p38, caspase/cytochrome-c and VEGF/PEDF-dependent signaling pathways in NSCLC cells. CONCLUSIONS: These results indicate that TFAP2B plays a critical role in regulating lung adenocarcinomas growth and could serve as a promising therapeutic target for lung cancer treatment.


Asunto(s)
Adenocarcinoma/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Proteínas del Ojo/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Factores de Crecimiento Nervioso/genética , Serpinas/genética , Factor de Transcripción AP-2/genética , Factor A de Crecimiento Endotelial Vascular/genética , Adenocarcinoma/irrigación sanguínea , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Anciano , Animales , Apoptosis , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas del Ojo/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Ratones , Persona de Mediana Edad , Trasplante de Neoplasias , Neovascularización Patológica/prevención & control , Factores de Crecimiento Nervioso/metabolismo , Pronóstico , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Serpinas/metabolismo , Transducción de Señal , Análisis de Supervivencia , Factor de Transcripción AP-2/antagonistas & inhibidores , Factor de Transcripción AP-2/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
12.
J Pineal Res ; 54(4): 406-16, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23330808

RESUMEN

Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, is largely distributed in medical herbs and edible plants. Melatonin is an indoleamine compound produced in the pineal gland and also a plant-derived product. Both UA and melatonin have been shown to inhibit cancer cell growth in numerous studies, but they have never been combined altogether as an anticolon cancer treatment. In this study, we investigated whether the association between UA and melatonin leads to an enhanced antiproliferative and pro-apoptotic activities in colon cancer SW480 and LoVo cells. We found that combined treatment with UA and melatonin significantly enhanced inhibition of cell viability and migration, promoted changes in cell morphology and spreading, and increased induction of apoptosis, thereby potentiating the effects of UA alone in colon cancer cells. Moreover, we found that the enhanced effects of UA and melatonin combination are mediated through simultaneous modulation of cytochrome c/caspase, MMP9/COX-2, and p300/NF-κB signaling pathways. Combined treatment with UA and melatonin triggered the release of cytochrome c from the mitochondrial intermembrane space into the cytosol, induced cleavage of caspase and PARP proteins, enhanced inhibition of MMP9 and COX-2 expression, promoted p300 and NF-κB translocation from cell nuclei to cytoplasm, and abrogated NF-κB binding and p300 recruitment to COX-2 promoter in colon cancer cells. These results, therefore, demonstrated that melatonin potentiated the antiproliferative and pro-apoptotic effects of UA in colon cancer cells by modulating multiple signaling pathways and suggest that such a combinational treatment might potentially become an effective way in colon cancer therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/patología , Melatonina/farmacología , Transducción de Señal/efectos de los fármacos , Secuencia de Bases , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Neoplasias del Colon/metabolismo , Cartilla de ADN , Humanos , Reacción en Cadena de la Polimerasa
13.
Chin J Cancer ; 32(9): 488-93, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23327796

RESUMEN

RNA interference (RNAi) has become a gold standard for validating gene function in basic life science research and provides a promising therapeutic modality for cancer and other diseases. This mini-review focuses on the potential of small interfering RNAs (siRNAs) in anticancer treatment, including the establishment and screening of cancer-associated siRNA libraries and their applications in anticancer drug target discovery and cancer therapy. This article also describes the current delivery approaches of siRNAs using lipids, polymers, and, in particular, gold nanoparticles to induce significant gene silencing and tumor growth regression.


Asunto(s)
Terapia Genética/métodos , Oro/química , Neoplasias/terapia , Interferencia de ARN , ARN Interferente Pequeño/genética , Animales , Ensayos Clínicos como Asunto , Portadores de Fármacos , Evaluación Preclínica de Medicamentos , Marcación de Gen , Humanos , Nanopartículas , Neoplasias/genética
14.
Glycoconj J ; 29(5-6): 297-303, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22669463

RESUMEN

M. tuberculosis GlmU is a bifunctional enzyme with acetyltransferase activity in C-terminus and uridyltransferase activity in N-terminus, and it is involved in the biosynthesis of glycosyl donor UDP-N-acetylglucosamine (UDP-GlcNAc). The crystal structure of M. tuberculosis GlmU clearly determines the active site and catalytic mechanism of GlmU uridyltransferase domain but not succeed in GlmU acetyltransferase domain. Sequence comparison analysis revealed highly conserved amino acid residues in the C-terminus between M. tuberculosis GlmU and GlmU enzymes from other bacteria. To find the essential amino acids related to M. tuberculosis GlmU acetyltransferase activity, we substituted 10 conserved amino acids in the acetyltransferase domain of M. tuberculosis GlmU by site-directed mutagenesis. All the mutant GlmU proteins were largely expressed in soluble and purified by affinity chromatography. Enzyme assays showed that K362A, H374A, Y398A and W460A mutants abolished more than 90% activity of M. tuberculosis GlmU acetyltransferase and totally lost the affinity with two substrates, suggesting the potential substrate-binding functions. However, K403A, S416A, N456A and E458A mutants exhibited decreased GlmU acetyltransferase activity and lower kinetic parameters, probably responsible for substrate releasing by conformation shifting.


Asunto(s)
Aminoácidos/química , Proteínas Bacterianas/química , Complejos Multienzimáticos/química , Mycobacterium tuberculosis/enzimología , Proteínas Recombinantes/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Escherichia coli/genética , Cinética , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Mycobacterium tuberculosis/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Uridina Difosfato N-Acetilgalactosamina/biosíntesis
15.
Redox Biol ; 55: 102418, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35932692

RESUMEN

As the largest subunit of the nuclear remodeling factor complex, Bromodomain PHD Finger Transcription Factor (BPTF) has been reported to be involved in tumorigenesis and development in several cancers. However, to date, its functions and related molecular mechanisms in colorectal cancer (CRC) are still poorly defined and deserve to be revealed. In this study, we uncovered that, under the expression regulation of c-Myc, BPTF promoted CRC progression by targeting Cdc25A. BPTF was found to be highly expressed in CRC and promoted the proliferation and metastasis of CRC cells through BPTF specific siRNAs, shRNAs or inhibitors. Based on RNA-seq, combined with DNA-pulldown, ChIP and luciferase reporter assay, we proved that, by binding to -178/+107 region within Cdc25A promoter, BPTF transcriptionally activated Cdc25A, thus accelerating the cell cycle process of CRC cells. Meanwhile, BPTF itself was found to be transcriptionally regulated by c-Myc. Moreover, BPTF knockdown or inactivation was verified to sensitize CRC cells to chemotherapeutics, 5-Fluorouracil (5FU) and Oxaliplatin (Oxa), c-Myc inhibitor and cell cycle inhibitor not just at the cellular level in vitro, but in subcutaneous xenografts or AOM/DSS-induced in situ models of CRC in mice, while Cdc25A overexpression partially reversed BPTF silencing-caused tumor growth inhibition. Clinically, BPTF, c-Myc and Cdc25A were highly expressed in CRC tissues simultaneously, the expression of any two of the three was positively correlated, and their expressions were highly relevant to tumor differentiation, TNM staging and poor prognosis of CRC patients. Thus, our study indicated that the targeted inhibition of BPTF alone, or together with chemotherapy and/or cell cycle-targeted therapy, might act as a promising new strategy for CRC treatment, while c-Myc/BPTF/Cdc25A signaling axis is expected to be developed as an associated set of candidate biomarkers for CRC diagnosis and prognosis prediction.

16.
Front Oncol ; 11: 702491, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34976785

RESUMEN

Abnormal expression of the transcription factor Y-box-binding protein-1 (YBX1) is associated with the proliferation, migration, aggressiveness, and stem-like properties of various cancers. These characteristics contribute to the tumorigenesis and metastasis of cancer. We found that the expression levels of Mucin-1 (MUC1) and YBX1 were positively correlated in lung adenocarcinoma cells and lung adenocarcinoma tissue. Our retrospective cohort study of 176 lung adenocarcinoma patients after surgery showed that low expression of both YBX1 and MUC1 was an independent predictor of the prognosis and recurrence of lung adenocarcinoma. In lung adenocarcinoma cells, the silencing/overexpression of YBX1 caused a simultaneous change in MUC1, and MUC1 overexpression partially reversed the decreased tumor cell migration, aggressiveness, and stemness caused by YBX1 silencing. Moreover, chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays proved that MUC1 was the downstream target of YBX1 and that YBX1 bound to the -1480~-1476 position in the promoter region of MUC1 to regulate its transcription. Furthermore, in mouse xenograft models and a lung cancer metastasis model, MUC1, which is downstream of YBX1, partially reversed the decreased number and size of tumors caused by YBX1 silencing. In conclusion, our findings indicated a novel mechanism by which YBX1 promotes the stemness and metastasis of lung adenocarcinoma by targeting MUC1 and provided a combination approach for diagnosis different from traditional single tumor biomarkers to predict patient prognosis and provide clinical treatment targets.

17.
Free Radic Biol Med ; 177: 31-47, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34648907

RESUMEN

In spite of significant advances in the understanding of glioma biology and pathology, survival remains poor. Therefore, it is still of great significance to further explore the key factors involved in tumorigenesis and development in glioma and find potential new therapeutic targets. Here, we show that thyroid hormone receptor interactor 4 (TRIP4) is highly expressed in glioma cells and tissues. Patients of glioma with high expression of TRIP4 possess poor overall survival. Knockdown of TRIP4 inhibited tumor cell proliferation, metastasis, and apoptosis suppression, whereas overexpression of TRIP4 displays the opposite effects. Further research showed that TRIP4 promoted glioma progression through regulating DDIT4 expression and subsequent activation of mTOR signaling. DDIT4 overexpression restored the inhibition of tumor growth by TRIP4 knockdown in vitro and in vivo. Consistently, mTOR activity inhibition reversed TRIP4 overexpression-mediated tumor promotion in vitro and in vivo. Moreover, molecular mechanism exploration demonstrates that TRIP4 functions as a specific transcriptional activator to anchor at the promoter region of DDIT4 gene (-196 to -11) to regulate its transcription and such regulation was affected by HIF1α. Clinically, TRIP4 expression is positively correlated with DDIT4 expression in glioma samples based on tissue microarray analysis and both of their high expression predicts the malignancy of the disease. Altogether, our findings identify TRIP4 as a critical promoter of glioma progression by targeting DDIT4 and mTOR signaling successively and suggest that TRIP4-DDIT4 axis has potential to be a novel therapeutic target in glioma treatment.


Asunto(s)
Glioma , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Humanos , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción
18.
Transl Oncol ; 14(1): 100876, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33007707

RESUMEN

BACKGROUND: Epirubicin is a first-line chemotherapeutic drug for the clinical treatment of diffuse large B cell lymphoma (DLBCL), but the overexpression of multidrug resistance (MDR) transporter proteins, especially P-glycoprotein (P-gp), renders epirubicin ineffective. Some studies reveal the potential role of melatonin in chemotherapeutic synergy and MDR. METHODS: The cell viability and apoptosis were determined by CCK-8 assay and acridine orange/ethidium bromide (AO/EB) fluorescence staining assay. Immunofluorescence and immunohistochemical staining were used to detect the expression of P-gp in DLBCL cells and tissues. Rhodamine-123 accumulation assay was used to evaluate the pump function of P-gp. The possible mechanisms of melatonin sensitize DLBCL cells to epirubicin were explored by western blotting, cytochrome C release, and pulldown assay. RESULTS: Melatonin significantly enhanced the epirubicin-induced cell proliferation suppression, epirubicin-induced apoptosis, and reduced the IC50 value of epirubicin. Further, melatonin synergized with epirubicin to promote the activation of the mitochondria-mediated apoptosis pathway and increased the accumulation of epirubicin in DLBCL cells by inhibiting the expression and function of P-gp. Immunohistochemical staining studies revealed that P-gp expression was positively correlated with P65 expression. Epirubicin was subsequently discovered to upregulate the expression of P-gp by activating the NF-κB pathway in the DLBCL cells. Melatonin reduced the amount of P65 protein in the nucleus and abrogated the ability of P65 to bind to the ABCB1 promoter, decisively suppressing P-gp expression. CONCLUSIONS: Our results demonstrated that melatonin inactivates the NF-κB pathway and downregulates the expression of P-gp, ultimately sensitizing DLBCL cells to the epirubicin that suppresses their growth.

19.
Mol Oncol ; 15(4): 1180-1202, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33305480

RESUMEN

Human telomerase reverse transcriptase (hTERT) plays an extremely important role in cancer initiation and development, including colorectal cancer (CRC). However, the precise upstream regulatory mechanisms of hTERT in different cancer types remain poorly understood. Here, we uncovered the candidate transcriptional factor of hTERT in CRC and explored its role and the corresponding molecular mechanisms in regulating hTERT expression and CRC survival with an aim of developing mechanism-based combinational targeting therapy. The possible binding proteins at the hTERT promoter were uncovered using pull-down/mass spectrometry analysis. The regulation of SPT6 on hTERT expression and CRC survival was evaluated in human CRC cell lines and mouse models. Mechanistic studies focusing on the synergy between SPT6 and staphylococcal nuclease and Tudor domain containing 1 (SND1) in controlling hTERT expression and CRC progression were conducted also in the above two levels. The expression correlation and clinical significance of SPT6, SND1, and hTERT were investigated in tumor tissues from murine models and patients with CRC in situ. SPT6 was identified as a possible transcriptional factor to bind to the hTERT promoter. SPT6 knockdown decreased the activity of hTERT promoter, downregulated the protein expression level of hTERT, suppressed proliferation, invasion, and stem-like properties, promoted apoptosis induction, and enhanced chemotherapeutic drug sensitivity in vitro. SPT6 silencing also led to the delay of tumor growth and metastasis in mice carrying xenografts of human-derived colon cancer cells. Mechanistically, SND1 interacted with SPT6 to co-control hTERT expression and CRC cell proliferation, stemness, and growth in vitro and in vivo. SPT6, SND1, and hTERT were highly expressed simultaneously in CRC tissues, both from the murine model and patients with CRC in situ, and pairwise expression among these three factors showed a significant positive correlation. In brief, our research demonstrated that SPT6 synergized with SND1 to promote CRC development by targeting hTERT and put forward that inhibiting the SPT6-SND1-hTERT axis may create a therapeutic vulnerability in CRC.


Asunto(s)
Neoplasias del Colon/patología , Endonucleasas/genética , Telomerasa/metabolismo , Factores de Transcripción/genética , Animales , Línea Celular Tumoral , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Regiones Promotoras Genéticas
20.
Cell Death Differ ; 28(4): 1347-1363, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33162555

RESUMEN

CRSP8 plays an important role in recruiting mediators to genes through direct interaction with various DNA-bound transactivators. In this study, we uncovered the unique function of CRSP8 in suppressing thyroid cancer differentiation and promoting thyroid cancer progression via targeting IKKα signaling. CRSP8 was highly expressed in human thyroid cancer cells and tissues, especially in anaplastic thyroid cancer (ATC). Knockdown of CRSP8 suppressed cell growth, migration, invasion, stemness, and induced apoptosis and differentiation in ATC cells, while its overexpression displayed opposite effects in differentiated thyroid cancer (DTC) cells. Mechanistically, CRSP8 downregulated IKKα expression by binding to the IKKα promoter region (-257 to -143) to negatively regulate its transcription. Knockdown or overexpression of IKKα significantly reversed the expression changes of the differentiation and EMT-related markers and cell growth changes mediated by CRSP8 knockdown or overexpression in ATC or DTC cells. The in vivo study also validated that CRSP8 knockdown inhibited the growth of thyroid cancer by upregulating IKKα signaling in a mouse model of human ATC. Furthermore, we found that CRSP8 regulated the sensitivity of thyroid cancer cells to chemotherapeutics, including cisplatin and epirubicin. Collectively, our results demonstrated that CRSP8 functioned as a modulator of IKKα signaling and a suppressor of thyroid cancer differentiation, suggesting a potential therapeutic strategy for ATC by targeting CRSP8/IKKα pathway.


Asunto(s)
Resistencia a Antineoplásicos/genética , Quinasa I-kappa B/metabolismo , Complejo Mediador/metabolismo , Carcinoma Anaplásico de Tiroides/metabolismo , Neoplasias de la Tiroides/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Epirrubicina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Quinasa I-kappa B/genética , Masculino , Complejo Mediador/genética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/patología , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA