Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 45(7): e2300647, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38243849

RESUMEN

The rise in universal population and accompanying demands have directed toward an exponential surge in the generation of polymeric waste. The estimate predicts that world-wide plastic production will rise to ≈590 million metric tons by 2050, whereas 5000 million more tires will be routinely abandoned by 2030. Handling this waste and its detrimental consequences on the Earth's ecosystem and human health presents a significant challenge. Converting the wastes into carbon-based functional materials viz. activated carbon, graphene, and nanotubes is considered the most scientific and adaptable method. Herein, this world provides an overview of the various sources of polymeric wastes, modes of build-up, impact on the environment, and management approaches. Update on advances and novel modifications made in methodologies for converting diverse types of polymeric wastes into carbon nanomaterials over the last 5 years are given. A remarkable focus is made to comprehend the applications of polymeric waste-derived carbon nanomaterials (PWDCNMs) in the CO2 capture, removal of heavy metal ions, supercapacitor-based energy storage and water splitting with an emphasis on the correlation between PWDCNMs' properties and their performances. This review offers insights into emerging developments in the upcycling of polymeric wastes and their applications in environment and energy.


Asunto(s)
Metales Pesados , Nanoestructuras , Nanotubos , Humanos , Polímeros , Ecosistema
2.
Sci Total Environ ; 930: 172729, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38670353

RESUMEN

Pyruvic acid (PA) is a ubiquitous 2-oxocarboxylic acid in the atmosphere. Its photochemical process at the air-liquid (a-l) interface has been suggested as an important source of aqueous secondary organic aerosols. We investigated the photochemical reaction pathways of PA at the a-l interface using synchrotron-based vacuum ultraviolet single-photon ionization mass spectrometry (VUV SPI-MS) coupled with the System for Analysis at the Liquid Vacuum Interface (SALVI) microreactor. Results from mass spectral analysis and the determination of appearance energies (AEs) indicate that photolysis of PA can generate radicals, then they recombine with carboxylic acids and simple molecular oligomers. Furthermore, the preliminary products could form larger oligomers via radical reaction or esterification in the presence of hydroxyl and carboxyl functional groups. Mass spectral comparison shows that most photochemical reactions would complete within 4 h. The expanded photochemistry-driven reaction flowchart of PA is proposed based on the newly discovered products. Our results reveal that the interfacial PA photochemical reactions have different mechanisms from the bulk liquid due to the interfacial properties, such as molecular density, composition, and ion concentration. Our findings show that in situ mass spectral analysis with bright photon ionization is useful to elucidate the contribution of a-l interfacial reactions leading to aqSOA formation.

3.
Materials (Basel) ; 17(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38730911

RESUMEN

Tungsten (W) and W alloys are considered as primary candidates for plasma-facing components (PFCs) that must perform in severe environments in terms of temperature, neutron fluxes, plasma effects, and irradiation bombardment. These materials are notoriously difficult to produce using additive manufacturing (AM) methods due to issues inherent to these techniques. The progress on applying AM techniques to W-based PFC applications is reviewed and the technical issues in selected manufacturing methods are discussed in this review. Specifically, we focus on the recent development and applications of laser powder bed fusion (LPBF), electron beam melting (EBM), and direct energy deposition (DED) in W materials due to their abilities to preserve the properties of W as potential PFCs. Additionally, the existing literature on irradiation effects on W and W alloys is surveyed, with possible solutions to those issues therein addressed. Finally, the gaps in possible future research on additively manufactured W are identified and outlined.

4.
Sci Rep ; 14(1): 14980, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951137

RESUMEN

Polyethylene glycols (PEGs) are used in industrial, medical, health care, and personal care applications. The cycling and disposal of synthetic polymers like PEGs pose significant environmental concerns. Detecting and monitoring PEGs in the real world calls for immediate attention. This study unveils the efficacy of time-of-flight secondary ion mass spectrometry (ToF-SIMS) as a reliable approach for precise analysis and identification of reference PEGs and PEGs used in cosmetic products. By comparing SIMS spectra, we show remarkable sensitivity in pinpointing distinctive ion peaks inherent to various PEG compounds. Moreover, the employment of principal component analysis effectively discriminates compositions among different samples. Notably, the application of SIMS two-dimensional image analysis visually portrays the spatial distribution of various PEGs as reference materials. The same is observed in authentic cosmetic products. The application of ToF-SIMS underscores its potential in distinguishing PEGs within intricate environmental context. ToF-SIMS provides an effective solution to studying emerging environmental challenges, offering straightforward sample preparation and superior detection of synthetic organics in mass spectral analysis. These features show that SIMS can serve as a promising alternative for evaluation and assessment of PEGs in terms of the source, emission, and transport of anthropogenic organics.


Asunto(s)
Cosméticos , Polietilenglicoles , Espectrometría de Masa de Ion Secundario , Cosméticos/análisis , Cosméticos/química , Espectrometría de Masa de Ion Secundario/métodos , Polietilenglicoles/química , Polietilenglicoles/análisis , Análisis de Componente Principal
5.
Materials (Basel) ; 17(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276468

RESUMEN

Secondary Ion Mass Spectrometry (SIMS) is an outstanding technique for Mass Spectral Imaging (MSI) due to its notable advantages, including high sensitivity, selectivity, and high dynamic range. As a result, SIMS has been employed across many domains of science. In this review, we provide an in-depth overview of the fundamental principles underlying SIMS, followed by an account of the recent development of SIMS instruments. The review encompasses various applications of specific SIMS instruments, notably static SIMS with time-of-flight SIMS (ToF-SIMS) as a widely used platform and dynamic SIMS with Nano SIMS and large geometry SIMS as successful instruments. We particularly focus on SIMS utility in microanalysis and imaging of metals and alloys as materials of interest. Additionally, we discuss the challenges in big SIMS data analysis and give examples of machine leaning (ML) and Artificial Intelligence (AI) for effective MSI data analysis. Finally, we recommend the outlook of SIMS development. It is anticipated that in situ and operando SIMS has the potential to significantly enhance the investigation of metals and alloys by enabling real-time examinations of material surfaces and interfaces during dynamic transformations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA